In this paper, we consider the existence of a ground state nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following fractional critical problem
$ \begin{equation*} \begin{cases} (a+ b\int_{\mathbb{R}^{3}}(|(-\Delta)^{\alpha/2}u|^{2})dx)(-\Delta)^{\alpha}u+V(x)u+K(x)\phi u = |u|^{2^{\ast}-2}u+ \kappa f(x,u),\\ (-\Delta)^{\beta}\phi = K(x)u^{2}, \quad x\in\mathbb{R}^{3}, \end{cases} \end{equation*} $
where $ a, b,\kappa $ are positive parameters, $ \alpha\in(\frac{3}{4},1),\beta\in(0,1) $, and $ 2^{\ast}_{\alpha} = \frac{6}{3-2\alpha} $, $ (-\Delta)^{\alpha} $ stands for the fractional Laplacian. By the nodal Nehari manifold method, for each $ b>0 $, we obtain a ground state nodal solution $ u_{b} $ and a ground-state solution $ v_b $ to this problem when $ \kappa\gg 1 $, where the nonlinear function $ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow\mathbb{R} $ is a Carathéodory function. We also give an analysis on the behavior of $ u_{b} $ as the parameter $ b\to 0 $.
Citation: |
[1] |
T. D'Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differ. Equ., 25 (2006), 105-137.
doi: 10.1007/s00526-005-0342-9.![]() ![]() ![]() |
[2] |
V. Benci and D. Fortunato, Solitary waves of nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168.![]() ![]() ![]() |
[3] |
G. F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157-165.
doi: 10.1090/qam/12351.![]() ![]() ![]() |
[4] |
K. Cheng and Q. Gao, Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R}^{N}$, Acta Math. Sci., 38B (2018), 1712-1732.
doi: 10.1016/S0252-9602(18)30841-5.![]() ![]() ![]() |
[5] |
S. Chen, X. Tang and F. Liao, Existence and asymptotic behavior of sign-changing solutions for fractional Kirchhoff-type problems in low dimensions, Nonlinear Differ. Equ. Appl., 25 (2018), 23pp.
doi: 10.1007/s00030-018-0531-9.![]() ![]() ![]() |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[7] |
Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012.![]() ![]() ![]() |
[8] |
M. F. Furtado, L. A. Maia and E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.
doi: 10.1515/ans-2008-0207.![]() ![]() ![]() |
[9] |
C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system in $\mathbb{R}^{3}$, Ann. Mat. Pura Appl., 198 (2019), 1563-1579.
doi: 10.1007/s10231-019-00831-2.![]() ![]() ![]() |
[10] |
Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.
doi: 10.1016/j.jde.2011.05.006.![]() ![]() ![]() |
[11] |
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036, 28pp.
doi: 10.1142/S0219199714500369.![]() ![]() ![]() |
[12] |
F. Li, Z. Song and Q. Zhang, Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity, Appl. Anal., 96 (2017), 2906-2916.
doi: 10.1080/00036811.2016.1253065.![]() ![]() ![]() |
[13] |
H. Luo, X. Tang and Z. Gao, Ground state sign-changing solutions for fractional Kirchhoff equations in bounded domains, J. Math. Phys., 59 (2018), 031504, 15 pp.
doi: 10.1063/1.5026674.![]() ![]() ![]() |
[14] |
M. Furtado, A. Maia Liliane and E. Medeiros, Least energy radial sign-changing solution for the Schrödinger-Poisson system in $\mathbb{R}^{3}$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571.
doi: 10.1016/j.jmaa.2019.01.063.![]() ![]() ![]() |
[15] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[16] |
D. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948.![]() ![]() ![]() |
[17] |
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005.![]() ![]() ![]() |
[18] |
D. Ruiz, On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.
doi: 10.1007/s00205-010-0299-5.![]() ![]() ![]() |
[19] |
J. Sun and S. Ma, Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differ. Equ., 260 (2016), 2119-2149.
doi: 10.1016/j.jde.2015.09.057.![]() ![]() ![]() |
[20] |
K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differ. Equ., 261 (2016), 3061-3106.
doi: 10.1016/j.jde.2016.05.022.![]() ![]() ![]() |
[21] |
D. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501, 19 pp.
doi: 10.1063/1.5074163.![]() ![]() ![]() |
[22] |
D. Wang, H. Zhang and W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301.
doi: 10.1016/j.jmaa.2019.07.052.![]() ![]() ![]() |
[23] |
Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differ. Equ., 52 (2015), 927-943.
doi: 10.1007/s00526-014-0738-5.![]() ![]() ![]() |
[24] |
T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27 (2006), 421-437.
doi: 10.1007/s00526-006-0015-3.![]() ![]() ![]() |
[25] |
M. Willem, Minimax Theorems, Birkhäuser, Bosten, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[26] |
C. Ye and K. Teng, Ground state and sign-changing solutions for fractional Schrödinger-Poisson system with critical growth, Complex Var. Ellip. Equ., 65 (2020), 1360-1393.
doi: 10.1080/17476933.2019.1652278.![]() ![]() ![]() |
[27] |
J. Zhang, J. M. do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028, 16pp.
doi: 10.1142/S0219199716500280.![]() ![]() ![]() |
[28] |
J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015), 387-404.
doi: 10.1016/j.jmaa.2015.03.032.![]() ![]() ![]() |
[29] |
G. Zhao, X. Zhu and Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572-581.
doi: 10.1016/j.amc.2015.01.038.![]() ![]() ![]() |