• Previous Article
    Multiple positive solutions for coupled Schrödinger equations with perturbations
  • CPAA Home
  • This Issue
  • Next Article
    Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity
February  2021, 20(2): 835-865. doi: 10.3934/cpaa.2020293

Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian

1. 

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, China

2. 

Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, USA

3. 

Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

* Corresponding author

Received  July 2020 Revised  October 2020 Published  February 2021 Early access  December 2020

Fund Project: The first author was supported by CHINA SCHOLARSHIP COUNCIL

We prove a Hopf's lemma in the point-wise sense for fractional $ p $-Laplacian. The essential technique is to prove $ (-\Delta)^s_p u(x) $ is uniformly bounded in the unit ball $ B_1\subset\mathbb{R}^n $, where $ u(x) = (1-|x|^2)^s_{+} $. Also we study the global Hölder continuity of bounded positive solutions for $ (-\Delta)^s_p u(x) = f(x,u). $

Citation: Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293
References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.  doi: 10.1017/S0956792598003453.

[2]

S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009.

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.

[4]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

W. X. Chen and C. M. Li, Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[8]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[9]

W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252.

[10]

W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020.

doi:10.1142//10550

[11]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.

[12]

Y. G. Chen and B. Y. Liu, Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.

[13]

L. M. Del Pezzo and A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.  doi: 10.1016/j.jde.2017.02.051.

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[15]

R. K. Getoor, First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.  doi: 10.2307/1993412.

[16]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885. doi: 10.4310/MRL.2016.v23.n3.a14.

[17]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.

[18]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.

[19]

L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495. doi: 10.3934/dcds.2019063.

[20]

Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020.

[21]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[23]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.

[24]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.  doi: 10.1080/03605300902892402.

[25]

F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933.

[26]

L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.

show all references

References:
[1]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions, Math. Ann., 310 (1998), 527-560.  doi: 10.1017/S0956792598003453.

[2]

S. Barb, Topics in Geometric Analysis with Applications to Partial Differential Equations, Ph.D thesis, University of Missouri–Columbia, 2009.

[3]

C. BjorlandL. Caffarelli and A. Figalli, Non-local gradient dependent operators, Adv. Math., 230 (2012), 1859-1894.  doi: 10.1016/j.aim.2012.03.032.

[4]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.

[5]

L. BrascoE. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional $ p $-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.

[6]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

W. X. Chen and C. M. Li, Maximum principles for the fractional $ p $-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[8]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[9]

W. X. Chen, C. M. Li and S. J. Qi, A Hopf lemma and regularity for fractional $ p $-Laplacians, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3235-3252.

[10]

W. X. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, 2020.

doi:10.1142//10550

[11]

W. X. ChenY. Li and R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.

[12]

Y. G. Chen and B. Y. Liu, Symmetry and non-existence of solutions for fractional $ p $-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.

[13]

L. M. Del Pezzo and A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $ p $-Laplacian, J. Differ. Equ., 263 (2017), 765-778.  doi: 10.1016/j.jde.2017.02.051.

[14]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[15]

R. K. Getoor, First passage times for symmetric stable processes in space, T. Am. Math. Soc., 101 (1961), 75-90.  doi: 10.2307/1993412.

[16]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885. doi: 10.4310/MRL.2016.v23.n3.a14.

[17]

A. IannizzottoS. Mosconi and M. Squassina, Global Hölder regularity for the fractional $ p $-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353-1392.  doi: 10.4171/RMI/921.

[18]

H. Ishii and G. Nakamura, A class of integral equations and approximation of $ p $-Laplace equations, Calc. Var. Partial Differ. Equ., 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.

[19]

L. Y. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $ p $-Laplacian, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 1477-1495. doi: 10.3934/dcds.2019063.

[20]

Z. Z. Li, On Some Problems for Fractional $ p $-Laplacian Operator and Nonlinear Elliptic Systems, Ph.D thesis, University of Chinese Academy of Sciences, 2020.

[21]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.

[23]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.

[24]

Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Commun. Partial Differ. Equ., 34 (2008), 765-784.  doi: 10.1080/03605300902892402.

[25]

F. del Teso, D. Gómez-Castro and J. L. Vázquez, Three representations of the fractional $p$-Laplacian: semigroup, extension and Balakrishnan formulas, arXiv: 2010.06933.

[26]

L. Wu and W. X. Chen, The sliding methods for the fractional $ p $-Laplacian, Adv. Math., 361 (2020), 106933. doi: 10.1016/j.aim.2019.106933.

[1]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[2]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[3]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[4]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[5]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[6]

Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036

[7]

Bin Shang, Chao Zhang. Hölder regularity for mixed local and nonlocal $ p $-Laplace parabolic equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022126

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[10]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[11]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[12]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[13]

Pengyan Wang, Wenxiong Chen. Hopf's lemmas for parabolic fractional p-Laplacians. Communications on Pure and Applied Analysis, 2022, 21 (9) : 3055-3069. doi: 10.3934/cpaa.2022089

[14]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[15]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[16]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[17]

Dimitri Mugnai, Kanishka Perera, Edoardo Proietti Lippi. A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Communications on Pure and Applied Analysis, 2022, 21 (1) : 275-292. doi: 10.3934/cpaa.2021177

[18]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[19]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[20]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (225)
  • HTML views (93)
  • Cited by (0)

Other articles
by authors

[Back to Top]