
-
Previous Article
Inequalities of Hermite-Hadamard type for higher order convex functions, revisited
- CPAA Home
- This Issue
-
Next Article
Multiple positive solutions for coupled Schrödinger equations with perturbations
On the quotient quantum graph with respect to the regular representation
Gazi University, Faculty of Science, Department of Mathematics, Ankara-Turkey |
Given a quantum graph $ \Gamma $, a finite symmetry group $ G $ acting on it and a representation $ R $ of $ G $, the quotient quantum graph $ \Gamma /R $ is described and constructed in the literature [
References:
[1] |
R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar |
[2] |
R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202.
doi: 10.1088/1751-8113/42/17/175202. |
[3] |
R. Band, T. Shapira and U. Smilansky,
Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.
doi: 10.1088/0305-4470/39/45/009. |
[4] |
G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar |
[5] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013.
doi: 10.1090/surv/186. |
[6] |
R. Carlson,
Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.
doi: 10.1090/S0002-9947-99-02175-3. |
[7] |
W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0979-9. |
[8] |
S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar |
[9] |
C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179.
doi: 10.1090/conm/387/07241. |
[10] |
C. Gordon, D. Webb and S. Wolpert,
One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.
doi: 10.1090/S0273-0979-1992-00289-6. |
[11] |
C. Gordon, D. Webb and S. Wolpert,
Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.
doi: 10.1007/BF01231320. |
[12] |
B. Gutkin and U. Smilansky,
Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.
doi: 10.1088/0305-4470/34/31/301. |
[13] |
M. Kac,
Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.
doi: 10.2307/2313748. |
[14] |
V. Kostrykin and R. Schrader,
Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.
doi: 10.1088/0305-4470/32/4/006. |
[15] |
T. Kottos and U. Smilansky,
Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.
doi: 10.1103/PhysRevLett.79.4794. |
[16] |
P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar |
[17] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014.
doi: 10.1007/978-3-319-04621-1. |
[18] |
O. Parzanchevski and R. Band,
Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.
doi: 10.1007/s12220-009-9115-6. |
[19] |
T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29.
doi: 10.1007/1-4020-3949-2_2. |
[20] |
T. Sunada,
Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.
doi: 10.2307/1971195. |
[21] |
J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36. |
show all references
References:
[1] |
R. Band, G. Berkolaiko, C. H. Joyner and W. Liu, Quotients of finite-dimensional operators by symmetry representations, arXiv: 1711.00918v3. Google Scholar |
[2] |
R. Band, O. Parzanchevski and G. Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A: Math. Theor., 42 (2009), 175202.
doi: 10.1088/1751-8113/42/17/175202. |
[3] |
R. Band, T. Shapira and U. Smilansky,
Nodal domains on isospectral quantum graphs: the resolution of isospectrality?, J. Phys. A: Math. Gen., 39 (2006), 13999-14014.
doi: 10.1088/0305-4470/39/45/009. |
[4] |
G. Berkolaiko, An elementary introduction to quantum graphs, arXiv: 1603.07356v2. Google Scholar |
[5] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, Rhode Island, 2013.
doi: 10.1090/surv/186. |
[6] |
R. Carlson,
Inverse eigenvalue problems on directed graphs, T. Am. Math. Soc., 351 (1999), 4069-4088.
doi: 10.1090/S0002-9947-99-02175-3. |
[7] |
W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0979-9. |
[8] |
S. Gnutzmann and U. Smilansky, Quantum graphs: applications to quantum chaos and universal spectral statistics, arXiv: nlin/0605028v2. Google Scholar |
[9] |
C. Gordon, P. Perry and D. Schüth, Isospectral and isoscattering manifolds: a survey of techniques and examples, in Geometry, Spectral Theory, Groups and Dynamics, Contemporary Mathematics vol. 387 (eds. M. Entov, Y. Pinchover and M. Sageev), American Mathematical Society, (2005), 157–179.
doi: 10.1090/conm/387/07241. |
[10] |
C. Gordon, D. Webb and S. Wolpert,
One cannot hear the shape of a drum, Bull. Am. Mat. Soc. (N.S.), 27 (1992), 134-138.
doi: 10.1090/S0273-0979-1992-00289-6. |
[11] |
C. Gordon, D. Webb and S. Wolpert,
Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22.
doi: 10.1007/BF01231320. |
[12] |
B. Gutkin and U. Smilansky,
Can one hear the shape of a graph?, J. Phys. A: Math. Gen., 31 (2001), 6061-6068.
doi: 10.1088/0305-4470/34/31/301. |
[13] |
M. Kac,
Can one hear the shape of a drum?, Am. Math. Mon., 73 (1966), 1-23.
doi: 10.2307/2313748. |
[14] |
V. Kostrykin and R. Schrader,
Kirchhoff's rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595-630.
doi: 10.1088/0305-4470/32/4/006. |
[15] |
T. Kottos and U. Smilansky,
Quantum chaos on graphs, Phys. Rev. Lett., 79 (1997), 4794-4797.
doi: 10.1103/PhysRevLett.79.4794. |
[16] |
P. Kuchment, Quantum graphs: an introduction and a brief survey, arXiv: 0802.3442v1. Google Scholar |
[17] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014.
doi: 10.1007/978-3-319-04621-1. |
[18] |
O. Parzanchevski and R. Band,
Linear representations and isospectrality with boundary conditions, J. Geom. Anal., 20 (2010), 439-471.
doi: 10.1007/s12220-009-9115-6. |
[19] |
T. Shapira and U. Smilansky, Quantum graphs which sound the same, in Non-Linear Dynamics and Fundamental Interactions. NATO Science Series Ⅱ: Mathematics, Physics and Chemistry, vol 213. (eds. F. Khanna and D. Matrasulov), Springer, (2005), 17–29.
doi: 10.1007/1-4020-3949-2_2. |
[20] |
T. Sunada,
Riemanninan coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186.
doi: 10.2307/1971195. |
[21] |
J. von Below, Can one hear the shape of a network?, in Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., vol. 219 (eds. F. Mehmeti, J. von Below and S. Nicaise), Dekker, (2001), 19–36. |




[1] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[2] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]