February  2021, 20(2): 903-914. doi: 10.3934/cpaa.2020296

Inequalities of Hermite-Hadamard type for higher order convex functions, revisited

Intitute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

Received  July 2020 Revised  October 2020 Published  February 2021 Early access  December 2020

In this paper we present a very short proof of inequalities of Hermite-Hadamard type obtained by M. Bessenyei and Zs. Páles. This proof is based on the recently developed method connected with use of stochastic orderings of random variables. In the second part of the paper we present a way to extend these known inequalities. Namely, we describe completely the possible inequalities of Hermite-Hadamard type for longer expression than it was the case in the results of Bessenyei and Páles.

Citation: Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure and Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296
References:
[1]

M. Bessenyei and Zs. Páles, Higher-order generalizations of Hadamard's inequality, Publicationes Math. (Debrecen), 61 (2002), 623-643. 

[2]

M. Bessenyei and Zs. Páles, Characterization of higher order monotonicity via integral inequalities, P. Roy. Soc. Edinb. A, 140 (2010), 723-736.  doi: 10.1017/S0308210509001188.

[3]

M. DenuitC. Lefevre and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequal. Appl., 1 (1998), 585-613.  doi: 10.7153/mia-01-56.

[4]

C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer, New York, 2006. doi: 10.1007/0-387-31077-0.

[5]

J. Ohlin, On a class of measures of dispersion with application to optimal reinsurance, Astin Bull., 5 (1969), 249-266. 

[6]

A. Olbryś and T. Szostok, Inequalities of the Hermite-Hadamard type involving numerical differentiation formulas, Results Math., 67 (2015), 403-416.  doi: 10.1007/s00025-015-0451-5.

[7]

T. Rajba, On The Ohlin lemma for Hermite-Hadamard-Fejer type inequalities, Math. Inequal. Appl. 17, (2014), 557–571. doi: 10.7153/mia-17-42.

[8]

T. Rajba, On a generalization of a theorem of Levin and Stečkin and inequalities of the Hermite-Hadamard type, Math. Inequal. Appl., 20, (2017), 363–375. doi: 10.7153/mia-20-25.

[9]

M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York, NY, 2007. doi: 10.1007/978-0-387-34675-5.

[10]

T. Szostok, Ohlin's lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math., 89 (2015), 915-926.  doi: 10.1007/s00010-014-0286-2.

[11]

T. Szostok, Levin-Stechkin theorem and inequalities of the Hermite-Hadamard type, arXiv: 1411.7708.

[12]

E. W. Weisstein, Legendre-Gauss quadrature, MathWorld, 2015.

[13]

E. W. Weisstein, Lobatto quadrature, MathWorld.

[14]

E. W. Weisstein, Radau quadrature, MathWorld.

show all references

References:
[1]

M. Bessenyei and Zs. Páles, Higher-order generalizations of Hadamard's inequality, Publicationes Math. (Debrecen), 61 (2002), 623-643. 

[2]

M. Bessenyei and Zs. Páles, Characterization of higher order monotonicity via integral inequalities, P. Roy. Soc. Edinb. A, 140 (2010), 723-736.  doi: 10.1017/S0308210509001188.

[3]

M. DenuitC. Lefevre and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequal. Appl., 1 (1998), 585-613.  doi: 10.7153/mia-01-56.

[4]

C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer, New York, 2006. doi: 10.1007/0-387-31077-0.

[5]

J. Ohlin, On a class of measures of dispersion with application to optimal reinsurance, Astin Bull., 5 (1969), 249-266. 

[6]

A. Olbryś and T. Szostok, Inequalities of the Hermite-Hadamard type involving numerical differentiation formulas, Results Math., 67 (2015), 403-416.  doi: 10.1007/s00025-015-0451-5.

[7]

T. Rajba, On The Ohlin lemma for Hermite-Hadamard-Fejer type inequalities, Math. Inequal. Appl. 17, (2014), 557–571. doi: 10.7153/mia-17-42.

[8]

T. Rajba, On a generalization of a theorem of Levin and Stečkin and inequalities of the Hermite-Hadamard type, Math. Inequal. Appl., 20, (2017), 363–375. doi: 10.7153/mia-20-25.

[9]

M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York, NY, 2007. doi: 10.1007/978-0-387-34675-5.

[10]

T. Szostok, Ohlin's lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math., 89 (2015), 915-926.  doi: 10.1007/s00010-014-0286-2.

[11]

T. Szostok, Levin-Stechkin theorem and inequalities of the Hermite-Hadamard type, arXiv: 1411.7708.

[12]

E. W. Weisstein, Legendre-Gauss quadrature, MathWorld, 2015.

[13]

E. W. Weisstein, Lobatto quadrature, MathWorld.

[14]

E. W. Weisstein, Radau quadrature, MathWorld.

Figure 1.  The graphs of functions $ F^{[1]} $ and $ G^{[1]} $ in the case $ 2\alpha_1\geq x_2 $
Figure 2.  The graphs of functions $ F^{[1]} $ and $ G^{[1]} $ (with two crossing points in the interval $ (x_2,x_3) $) in the case $ 2\alpha_1<x_2 $
[1]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021, 4 (2) : 89-103. doi: 10.3934/mfc.2021005

[2]

S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 271-278. doi: 10.3934/naco.2012.2.271

[3]

Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1

[4]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

[5]

Muhammad Aslam Noor, Khalida Inayat Noor. General biconvex functions and bivariational inequalities. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021041

[6]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[7]

Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi. Convex and quasiconvex functions in metric graphs. Networks and Heterogeneous Media, 2021, 16 (4) : 591-607. doi: 10.3934/nhm.2021019

[8]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[9]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial and Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[10]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[11]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[12]

Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022055

[13]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control and Related Fields, 2022, 12 (1) : 225-243. doi: 10.3934/mcrf.2021019

[14]

Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256

[15]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[16]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations and Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[17]

Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom. More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2119-2135. doi: 10.3934/dcdss.2021063

[18]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[19]

Gümrah Uysal. On a special class of modified integral operators preserving some exponential functions. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2021044

[20]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (229)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]