February  2021, 20(2): 933-954. doi: 10.3934/cpaa.2020298

Ground states for a class of quasilinear Schrödinger equations with vanishing potentials

1. 

School of Mathematics and Statistics, Central South University, Changsha, 410083, China

2. 

Center for Mathematical Sciences, Wuhan University of Technology, Wuhan, 430070, China

* Corresponding author

Received  August 2020 Revised  October 2020 Published  December 2020

Fund Project: The first author is supported by Hunan Provincial Natural Science Foundation under grant number 2019JJ40355; The second author is supported by the Natural Science Foundation of China under grant number 11771127 and the Fundamental Research Funds for Central Universities (WUT: 2019IB009, 2020IB011, 2020IB019)

In this paper, we study a class of quasilinear Schrödinger equation of the form
$ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2(\Delta(|u|^{2}))u = K(x)|u|^{q-2}u,\quad x\in{\mathbb{R}^N}, $
where
$ V $
,
$ K $
are smooth functions and
$ V $
may vanish at infinity,
$ 2<q<2(2^*) $
. We prove the existence of a positive ground state solution which possesses a unique local maximum and decays exponentially.
Citation: Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298
References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinitey, J. Anal. Math., 98 (2006), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 18 (2005), 1321-1332.   Google Scholar

[4]

J. F. L. Aires and M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924-946.  doi: 10.1016/j.jmaa.2014.03.018.  Google Scholar

[5]

D. Bonheure and J. Van Schaftingen, Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342 (2006), 903-908.  doi: 10.1016/j.crma.2006.04.011.  Google Scholar

[6]

D. Bonheure and J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24 (2008), 297-351.  doi: 10.4171/RMI/537.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[9]

Y. B. Deng and W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[10]

J. M. Do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[11]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[12]

S. Kurihura, Large-amplitude quasi-solitions in superfluid films, J. Phys. Soc. Jpn, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[13]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[14]

H. LangeB. Toomire and P. F. Zweifel, Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys., 36 (1995), 1274-1283.  doi: 10.1063/1.531120.  Google Scholar

[15]

Z. X. Li, Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differ. Equ., 266 (2019), 7264-7290.  doi: 10.1016/j.jde.2018.11.030.  Google Scholar

[16]

Z. X. Li and Y. M. Zhang, Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents, J. Math. Phys., 58 (2017), 021501. doi: 10.1063/1.4975009.  Google Scholar

[17]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[18]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[19]

C. Y. LiuZ. P. Wang and H. S. Zhou, Asymptotically linear Schrödinger equaiton with potential vanishing at infinity, J. Differ. Equ., 245 (2008), 201-222.  doi: 10.1016/j.jde.2008.01.006.  Google Scholar

[20]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${\mathbb{R}}^N$, J. Differ. Equ., 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[21]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937-957.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fastdecaying potentials, Calc. Var., 37 (2010), 1-27.  doi: 10.1007/s00526-009-0249-y.  Google Scholar

[23]

V. G. Makhankov and V. K. Fedanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[24]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res., Notes in Math. Ser. 219, Longman Sci. Tech., Harlow, 1990.  Google Scholar

[25]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[26]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA, 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[27]

J. B. SuZ. Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Cont. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[28]

Y. J. WangJ. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the $N$-Laplacian with critical exponential growth in ${\mathbb{R}}^N$, Nonlinear Anal. TMA, 71 (2009), 6157-6169.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[29]

Z. P. Wang and H. S. Zhou, Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential, J. Math. Phys., 52 (2011), 113704. doi: 10.1063/1.3663434.  Google Scholar

show all references

References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinitey, J. Anal. Math., 98 (2006), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 18 (2005), 1321-1332.   Google Scholar

[4]

J. F. L. Aires and M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924-946.  doi: 10.1016/j.jmaa.2014.03.018.  Google Scholar

[5]

D. Bonheure and J. Van Schaftingen, Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342 (2006), 903-908.  doi: 10.1016/j.crma.2006.04.011.  Google Scholar

[6]

D. Bonheure and J. Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24 (2008), 297-351.  doi: 10.4171/RMI/537.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[9]

Y. B. Deng and W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[10]

J. M. Do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[11]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[12]

S. Kurihura, Large-amplitude quasi-solitions in superfluid films, J. Phys. Soc. Jpn, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[13]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[14]

H. LangeB. Toomire and P. F. Zweifel, Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys., 36 (1995), 1274-1283.  doi: 10.1063/1.531120.  Google Scholar

[15]

Z. X. Li, Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differ. Equ., 266 (2019), 7264-7290.  doi: 10.1016/j.jde.2018.11.030.  Google Scholar

[16]

Z. X. Li and Y. M. Zhang, Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents, J. Math. Phys., 58 (2017), 021501. doi: 10.1063/1.4975009.  Google Scholar

[17]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[18]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[19]

C. Y. LiuZ. P. Wang and H. S. Zhou, Asymptotically linear Schrödinger equaiton with potential vanishing at infinity, J. Differ. Equ., 245 (2008), 201-222.  doi: 10.1016/j.jde.2008.01.006.  Google Scholar

[20]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${\mathbb{R}}^N$, J. Differ. Equ., 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[21]

A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937-957.  doi: 10.1088/0951-7715/19/4/009.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fastdecaying potentials, Calc. Var., 37 (2010), 1-27.  doi: 10.1007/s00526-009-0249-y.  Google Scholar

[23]

V. G. Makhankov and V. K. Fedanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[24]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res., Notes in Math. Ser. 219, Longman Sci. Tech., Harlow, 1990.  Google Scholar

[25]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[26]

Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA, 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[27]

J. B. SuZ. Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Cont. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[28]

Y. J. WangJ. Yang and Y. M. Zhang, Quasilinear elliptic equations involving the $N$-Laplacian with critical exponential growth in ${\mathbb{R}}^N$, Nonlinear Anal. TMA, 71 (2009), 6157-6169.  doi: 10.1016/j.na.2009.06.006.  Google Scholar

[29]

Z. P. Wang and H. S. Zhou, Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential, J. Math. Phys., 52 (2011), 113704. doi: 10.1063/1.3663434.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[6]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[7]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[9]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[18]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]