doi: 10.3934/cpaa.2021001

Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions

Department of Mathematics, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Jodhpur 342037, India

Received  May 2020 Revised  November 2020 Published  January 2021

Fund Project: I acknowledge IIT Jodhpur for research grant support as SEED grant and infrastructural support

We consider reaction diffusion systems where components diffuse inside the domain and react on the surface through mass transport type boundary conditions. Under reasonable hypotheses, we establish the existence of component wise non-negative global solutions which are uniformly bounded in the sup norm.

Citation: Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021001
References:
[1]

S Abdelmalek and S Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A: Math. Theor., 40 (2007), 12335-12350.  doi: 10.1088/1751-8113/40/41/005.  Google Scholar

[2]

José A. CãnizoLaurent Desvillettes and Klemens Fellner, Improved duality estimates and applications to reaction-diffusion equations, Commun. Partial Differ. Equ., 39 (2014), 1185-1204.  doi: 10.1080/03605302.2013.829500.  Google Scholar

[3]

J. Ding and S. Li, Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.  doi: 10.1016/j.na.2006.11.016.  Google Scholar

[4]

Klemens Fellner, J. Morgan and Bao Quoc Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, arXiv: 1906.06902. Google Scholar

[5]

Klemens FellnerJ. Morgan and Bao Quoc Tang, Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Annales de l'Institut Henri Poincaré, 37 (2020), 281-307.  doi: 10.1016/j.anihpc.2019.09.003.  Google Scholar

[6]

T. Goudon and A. Vasseur, Regularity analysis for systems of reaction-diffusion equations, Ann. Sci. Éc. Norm. Supér., (4) (2010), 117–142. doi: 10.24033/asens.2117.  Google Scholar

[7]

Selwyn L. HollisRobert H. Jr. Martin and Michel Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.  Google Scholar

[8] O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[9]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R.I, 1968.  Google Scholar

[10]

J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[11]

J. Morgan and Bao Quoc Tang, Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions, Nonlinearity, 33 (2020), 3105-3133.  doi: 10.1088/1361-6544/ab8772.  Google Scholar

[12]

J. Morgan and V. Sharma, Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differ. Integral Equ., 33 (2020), 113-139.   Google Scholar

[13]

M. Pierre and Didier Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.  doi: 10.1137/S0036144599359735.  Google Scholar

[14]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[15]

V. Sharma and J. Morgan, Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[16]

V. Sharma and J. Morgan, Uniform bounds for solutions to volume-surface reaction diffusion systems, Differ. Integral Equ., 30 (2017), 423-442.   Google Scholar

[17]

Bao Quoc Tang, Global classical solutions to reaction-diffusion systems in one and two dimensions, Commun. Math. Sci., 16 (2018), 411-423.  doi: 10.4310/CMS.2018.v16.n2.a5.  Google Scholar

[18]

M. E. Taylor, Partial Differential Equations I-III, Springer, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

show all references

References:
[1]

S Abdelmalek and S Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A: Math. Theor., 40 (2007), 12335-12350.  doi: 10.1088/1751-8113/40/41/005.  Google Scholar

[2]

José A. CãnizoLaurent Desvillettes and Klemens Fellner, Improved duality estimates and applications to reaction-diffusion equations, Commun. Partial Differ. Equ., 39 (2014), 1185-1204.  doi: 10.1080/03605302.2013.829500.  Google Scholar

[3]

J. Ding and S. Li, Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.  doi: 10.1016/j.na.2006.11.016.  Google Scholar

[4]

Klemens Fellner, J. Morgan and Bao Quoc Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, arXiv: 1906.06902. Google Scholar

[5]

Klemens FellnerJ. Morgan and Bao Quoc Tang, Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Annales de l'Institut Henri Poincaré, 37 (2020), 281-307.  doi: 10.1016/j.anihpc.2019.09.003.  Google Scholar

[6]

T. Goudon and A. Vasseur, Regularity analysis for systems of reaction-diffusion equations, Ann. Sci. Éc. Norm. Supér., (4) (2010), 117–142. doi: 10.24033/asens.2117.  Google Scholar

[7]

Selwyn L. HollisRobert H. Jr. Martin and Michel Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.  Google Scholar

[8] O. A. Ladyzhenskaia and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[9]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R.I, 1968.  Google Scholar

[10]

J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[11]

J. Morgan and Bao Quoc Tang, Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions, Nonlinearity, 33 (2020), 3105-3133.  doi: 10.1088/1361-6544/ab8772.  Google Scholar

[12]

J. Morgan and V. Sharma, Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differ. Integral Equ., 33 (2020), 113-139.   Google Scholar

[13]

M. Pierre and Didier Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.  doi: 10.1137/S0036144599359735.  Google Scholar

[14]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[15]

V. Sharma and J. Morgan, Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[16]

V. Sharma and J. Morgan, Uniform bounds for solutions to volume-surface reaction diffusion systems, Differ. Integral Equ., 30 (2017), 423-442.   Google Scholar

[17]

Bao Quoc Tang, Global classical solutions to reaction-diffusion systems in one and two dimensions, Commun. Math. Sci., 16 (2018), 411-423.  doi: 10.4310/CMS.2018.v16.n2.a5.  Google Scholar

[18]

M. E. Taylor, Partial Differential Equations I-III, Springer, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[1]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[2]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[6]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[9]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[10]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[11]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[14]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[15]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[16]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[17]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[18]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[19]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[20]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]