doi: 10.3934/cpaa.2021002

Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials

Department of Analysis, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Received  June 2020 Revised  November 2020 Published  January 2021

Fund Project: The author is supported by the NKFIH-OTKA Grants K128922 and K132097

Some weighted inequalities for the maximal operator with respect to the discrete diffusion semigroups associated with exceptional Jacobi and Jacobi-Dunkl polynomials are given. This setup allows to extend the corresponding results obtained for discrete heat semigroup recently to richer class of differential-difference operators.

Citation: Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021002
References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

show all references

References:
[1]

V. Almeida, J. J. Betancor and L. Rodríguez-Mesa, Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian, Mediterr. J. Math., 16 (2019), 23pp. doi: 10.1007/s00009-019-1366-2.  Google Scholar

[2]

A. Arenas, Ó. Ciaurri and E. Labarga, Discrete harmonic analysis associated with Jacobi expansions I: The heat semigroup, J. Math. Anal. Appl., 490 (2020), 123996. doi: 10.1016/j.jmaa.2020.123996.  Google Scholar

[3]

F. Astengo and B. Di Blasio, Dynamics of the heat semigroup in Jacobi analysis, J. Math. Anal. Appl., 391 (2012), 48-56.  doi: 10.1016/j.jmaa.2012.02.033.  Google Scholar

[4]

J. J. BetancorA. J. CastroJ. C. Farina and L. Rodríguez-Mesa, Discrete harmonic analysis associated with ultraspherical expansions, Potential Anal., 53 (2020), 523-563.  doi: 10.1007/s11118-019-09777-9.  Google Scholar

[5]

F. Chouchene, Harmonic analysis associated with the Jacobi-Dunkl operator on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, J. Comput. Appl. Math., 178 (2005), 75-89.  doi: 10.1016/j.cam.2004.02.025.  Google Scholar

[6]

F. ChoucheneL. Gallardo and M. Mili, The heat semigroup for the Jacobi-Dunkl operator and the related Markov processes, Potential Anal., 25 (2006), 103-119.  doi: 10.1007/s11118-006-9012-6.  Google Scholar

[7]

F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, Int. J. Open Problems Complex Anal., 6 (2014), 49-77.  doi: 10.12816/0006030.  Google Scholar

[8]

F. Chouchene and I. Haouala, De La Vallée Poussin Approximations and Jacobi-Dunkl Convolution Structures, Results Math., 75 (2020), b21pp. doi: 10.1007/s00025-020-1175-8.  Google Scholar

[9]

O. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. d'Analyse Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.  Google Scholar

[10]

A. Durán, Corrigendum to the papers on Exceptional orthogonal polynomials, J. Approx. Theory 253 (2020), 105349. doi: 10.1016/j.jat.2019.105349.  Google Scholar

[11]

M. Á. García-FerreroD. Gómez-Ullate and R. Milson, A Bochner type classification theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472 (2019), 584-626.  doi: 10.1016/j.jmaa.2018.11.042.  Google Scholar

[12]

D. Gómez-Ullate, Y. Grandati and R. Milson, Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, 253 (2020), 105350. doi: 10.1016/j.jat.2019.105350.  Google Scholar

[13]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[14]

D. Gómez-Ullate, F. Marcellán and R. Milson, Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials, J. Math. Anal. Appl., 399 (2013, ) 480–495. doi: 10.1016/j.jmaa.2012.10.032.  Google Scholar

[15]

D. V. GorbachevV. I. Ivanov and S. Y. Tikhonov, Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications, Constr. Approx., 49 (2019), 555-605.  doi: 10.1007/s00365-018-9435-5.  Google Scholar

[16]

Á. P. Horváth, Asymptotics for Recurrence Coefficients of $X_1$-Jacobi Exceptional Polynomials and Christoffel Function, Integr. Transf. Spec. F., 31 (2020), 87-106.  doi: 10.1080/10652469.2019.1672051.  Google Scholar

[17]

Á. P. Horváth, Multiplication operator and exceptional Jacobi polynomials, arXiv: 2003.11861. Google Scholar

[18]

P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx Theory, 48 (1986), 3-167.  doi: 10.1016/0021-9045(86)90016-X.  Google Scholar

[19]

S. Odake, Recurrence relations of the multi-indexed orthogonal polynomials : II, J Math Phys., 56 (2015), 053506. doi: 10.1063/1.4921230.  Google Scholar

[20]

E. A. Rahmanov, On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46 (1983), 105–l17.  Google Scholar

[21]

M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Springer, Berlin, 2003. doi: 10.1007/3-540-44945-0_3.  Google Scholar

[22] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, NJ, 1970.   Google Scholar
[23]

M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society, New York, 1932. doi: 10.1090/coll/015.  Google Scholar

[24]

G. Szegő, Orthogonal Polynomials, 4$^{th}$ edition, American Mathematical Society, Providence RI, 1975  Google Scholar

[25]

O. L. Vinogradov, On the norms of generalized translation operators generated by the Jacobi-Dunkl operators, J. of Math. Sci., 182 (2012), 603-616.  doi: 10.1007/s10958-012-0765-8.  Google Scholar

[1]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[4]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[5]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[6]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[7]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[8]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[14]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[17]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (31)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]