
-
Previous Article
Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation
- CPAA Home
- This Issue
-
Next Article
Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
An overdetermined problem associated to the Finsler Laplacian
1. | Department of Mathematics "Federigo Enriques", Università degli Studi di Milano, Italy |
2. | Department of Mathematics and Computer Science, Università degli Studi di Cagliari, Italy |
We prove a rigidity result for the anisotropic Laplacian. More precisely, the domain of the problem is bounded by an unknown surface supporting a Dirichlet condition together with a Neumann-type condition which is not translation-invariant. Using a comparison argument, we show that the domain is in fact a Wulff shape. We also consider the more general case when the unknown surface is required to have its boundary on a given conical surface: in such a case, the domain of the problem is bounded by the unknown surface and by a portion of the given conical surface, which supports a homogeneous Neumann condition. We prove that the unknown surface lies on the boundary of a Wulff shape.
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |
show all references
References:
[1] |
C. Bianchini and G. Ciraolo,
Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Partial Differ. Equ., 43 (2018), 790-820.
doi: 10.1080/03605302.2018.1475488. |
[2] |
C. Bianchini, G. Ciraolo and P. Salani, An overdetermined problem for the anisotropic capacity, Calc. Var., 55, 84 (2016).
doi: 10.1007/s00526-016-1011-x. |
[3] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[4] |
P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control., Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser, 2004. |
[5] |
A. Cianchi and P. Salani,
Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.
doi: 10.1007/s00208-009-0386-9. |
[6] |
G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic $p$-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770-803.
doi: 10.1007/s00039-020-00535-3. |
[7] |
G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, Calc. Var. Partial Differ. Equ., 59, 28 (2020).
doi: 10.1007/s00526-019-1678-x. |
[8] |
A. Farina and B. Kawohl,
Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differ. Equ., 31 (2008), 351-357.
doi: 10.1007/s00526-007-0115-8. |
[9] |
A. Farina and E. Valdinoci,
On partially and globally overdetermined problems of elliptic type, Amer. J. Math., 135 (2013), 1699-1726.
doi: 10.1353/ajm.2013.0052. |
[10] |
E. Ferone and B. Kawohl,
Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3. |
[11] |
I. Fragalà and F. Gazzola,
Partially overdetermined elliptic boundary value problems, J. Differ. Equ., 245 (2008), 1299-1322.
doi: 10.1016/j.jde.2008.06.014. |
[12] |
I. Fragalà, F. Gazzola, J. Lamboley and M. Pierre,
Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85-93.
doi: 10.1524/anly.2009.1016. |
[13] |
N. Garofalo and J. L. Lewis,
A symmetry result related to some overdetermined boundary value problems, Amer. J. Math., 111 (1989), 9-33.
doi: 10.2307/2374477. |
[14] |
A. Greco,
Comparison principle and constrained radial symmetry for the subdiffusive $p$-Laplacian, Publ. Mat., 58 (2014), 485-498.
doi: 10.5565/PUBLMAT_58214_24. |
[15] |
A. Greco,
Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003), 387-399.
|
[16] |
P. L. Lions and F. Pacella,
Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990), 477-485.
doi: 10.2307/2048011. |
[17] |
F. Pacella and G. Tralli,
Overdetermined problems and constant mean curvature surfaces in cones, Rev. Mat. Iberoam., 36 (2020), 841-867.
doi: 10.4171/rmi/1151. |
[18] |
A. Roncoroni, A symmetry result for the $\varphi$-Laplacian in model manifolds, preprint. |
[19] |
S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd ed, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-31238-5. |
[20] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, in Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 1993.
doi: 10.1017/CBO9780511526282. |
[21] |
J. Serrin,
A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[22] |
G. Wang and C. Xia,
A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal., 199 (2011), 99-115.
doi: 10.1007/s00205-010-0323-9. |



[1] |
Francesca Colasuonno, Fausto Ferrari. The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem. Communications on Pure and Applied Analysis, 2020, 19 (2) : 983-1000. doi: 10.3934/cpaa.2020045 |
[2] |
Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control and Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022 |
[3] |
Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239 |
[4] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[5] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[6] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[7] |
Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759 |
[8] |
Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control and Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023 |
[9] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[10] |
Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure and Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133 |
[11] |
Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739 |
[12] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
[13] |
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 |
[14] |
Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[15] |
Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 |
[16] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[17] |
Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011 |
[18] |
Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455 |
[19] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[20] |
Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]