-
Previous Article
Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation
- CPAA Home
- This Issue
-
Next Article
Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping
Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes
1. | Department of Mathematics, Brunel University London, UK |
2. | Department of Quantitative Methods, Universidad Loyola Andalucía, Sevilla, Spain |
Two direct systems of Boundary-Domain Integral Equations, BDIEs, associated with a mixed boundary value problem for the stationary compressible Stokes system with variable viscosity coefficient in an exterior domain of $ \mathbb{R}^3 $ are derived. This is done by employing the Stokes surface and volume potentials based on an appropriate parametrix (Levi function) in the third Green identities for the velocity and pressure. Mapping properties of the potentials in weighted Sobolev spaces are analysed. Finally, the equivalence between the BDIE systems and the BVP is shown and the isomorphism of operators defined by the BDIE systems is proved.
References:
[1] |
F. Alliot and C. Amrouche,
Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.
doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4. |
[2] |
C. Amrouche, V. Girault and J. Giroire,
Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.
doi: 10.1016/S0021-7824(97)89945-X. |
[3] |
A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[5] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili,
Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.
doi: 10.1216/JIE-2009-21-4-499. |
[6] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp.
doi: 10.1142/S0219530513500061. |
[7] |
M. Costabel,
Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.
doi: 10.1137/0519043. |
[8] |
T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019.
doi: 10.1007/978-3-030-04459-6_46. |
[9] |
C. Fresneda-Portillo and S. E. Mikhailov,
Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.
doi: 10.3934/cpaa.2019137. |
[10] |
J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar |
[11] |
J. Giroire and J. Nedelec,
Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.
doi: 10.2307/2006329. |
[12] |
R. Gutt, M. Kohr, S. E. Mikhailov and W. L. Wendland,
On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.
doi: 10.1002/mma.4562. |
[13] |
B. Hanouzet,
Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.
|
[14] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-68545-6. |
[15] |
M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp.
doi: 10.1007/s00033-016-0696-1. |
[16] |
M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar |
[17] |
M. Kohr and W. L. Wendland,
Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.
doi: 10.1080/00036810600963961. |
[18] |
M. Kohr and W. L. Wendland,
Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.
doi: 10.1016/j.matpur.2019.04.002. |
[19] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969. |
[20] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973. |
[21] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.
![]() |
[22] |
S. E. Mikhailov,
Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.
doi: 10.1016/j.jmaa.2010.12.027. |
[23] |
S. E. Mikhailov,
Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.
doi: 10.1016/S0955-7997(02)00030-9. |
[24] |
S. E. Mikhailov,
Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.
doi: 10.1186/s13661-018-0992-0. |
[25] |
S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015. |
[26] |
S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar |
[27] |
S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar |
[28] |
I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182.
doi: 10.1090/S0002-9947-07-04146-3. |
[29] |
J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4393-7. |
[30] |
J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129. Google Scholar |
[31] |
J. B. Neto,
Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.
|
[32] |
B. Reidinger and O. Steinbach,
A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.
doi: 10.1002/mma.347. |
[33] |
O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007.
doi: 10.1007/978-0-387-68805-3. |
[34] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001.
doi: 10.1090/chel/343. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. |
[36] |
W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994. |
[37] |
W. L. Wendland and J. Zhu,
The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.
doi: 10.1016/0895-7177(91)90021-X. |
show all references
References:
[1] |
F. Alliot and C. Amrouche,
Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.
doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4. |
[2] |
C. Amrouche, V. Girault and J. Giroire,
Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.
doi: 10.1016/S0021-7824(97)89945-X. |
[3] |
A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[5] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili,
Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.
doi: 10.1216/JIE-2009-21-4-499. |
[6] |
O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp.
doi: 10.1142/S0219530513500061. |
[7] |
M. Costabel,
Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.
doi: 10.1137/0519043. |
[8] |
T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019.
doi: 10.1007/978-3-030-04459-6_46. |
[9] |
C. Fresneda-Portillo and S. E. Mikhailov,
Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.
doi: 10.3934/cpaa.2019137. |
[10] |
J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar |
[11] |
J. Giroire and J. Nedelec,
Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.
doi: 10.2307/2006329. |
[12] |
R. Gutt, M. Kohr, S. E. Mikhailov and W. L. Wendland,
On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.
doi: 10.1002/mma.4562. |
[13] |
B. Hanouzet,
Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.
|
[14] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-68545-6. |
[15] |
M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp.
doi: 10.1007/s00033-016-0696-1. |
[16] |
M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar |
[17] |
M. Kohr and W. L. Wendland,
Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.
doi: 10.1080/00036810600963961. |
[18] |
M. Kohr and W. L. Wendland,
Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.
doi: 10.1016/j.matpur.2019.04.002. |
[19] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969. |
[20] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973. |
[21] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.
![]() |
[22] |
S. E. Mikhailov,
Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.
doi: 10.1016/j.jmaa.2010.12.027. |
[23] |
S. E. Mikhailov,
Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.
doi: 10.1016/S0955-7997(02)00030-9. |
[24] |
S. E. Mikhailov,
Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.
doi: 10.1186/s13661-018-0992-0. |
[25] |
S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015. |
[26] |
S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar |
[27] |
S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar |
[28] |
I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182.
doi: 10.1090/S0002-9947-07-04146-3. |
[29] |
J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4393-7. |
[30] |
J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129. Google Scholar |
[31] |
J. B. Neto,
Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.
|
[32] |
B. Reidinger and O. Steinbach,
A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.
doi: 10.1002/mma.347. |
[33] |
O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007.
doi: 10.1007/978-0-387-68805-3. |
[34] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001.
doi: 10.1090/chel/343. |
[35] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. |
[36] |
W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994. |
[37] |
W. L. Wendland and J. Zhu,
The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.
doi: 10.1016/0895-7177(91)90021-X. |
[1] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[2] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[8] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[9] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[10] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[11] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[12] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[13] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[14] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[15] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[16] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[17] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[18] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[19] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[20] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]