March  2021, 20(3): 1103-1133. doi: 10.3934/cpaa.2021009

Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs

1. 

Department of Mathematics, Brunel University London, UK

2. 

Department of Quantitative Methods, Universidad Loyola Andalucía, Sevilla, Spain

* Corresponding author

Received  August 2020 Revised  November 2020 Published  March 2021 Early access  January 2021

Fund Project: This research was supported by the grants EP/H020497/1, EP/M013545/1, and 1636273 from the EPSRC, UK, and also by Brunel University London

Two direct systems of Boundary-Domain Integral Equations, BDIEs, associated with a mixed boundary value problem for the stationary compressible Stokes system with variable viscosity coefficient in an exterior domain of $ \mathbb{R}^3 $ are derived. This is done by employing the Stokes surface and volume potentials based on an appropriate parametrix (Levi function) in the third Green identities for the velocity and pressure. Mapping properties of the potentials in weighted Sobolev spaces are analysed. Finally, the equivalence between the BDIE systems and the BVP is shown and the isomorphism of operators defined by the BDIE systems is proved.

Citation: Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009
References:
[1]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.  doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[2]

C. AmroucheV. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.  doi: 10.1016/S0021-7824(97)89945-X.  Google Scholar

[3]

A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.  doi: 10.1216/JIE-2009-21-4-499.  Google Scholar

[6]

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp. doi: 10.1142/S0219530513500061.  Google Scholar

[7]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.  doi: 10.1137/0519043.  Google Scholar

[8]

T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019. doi: 10.1007/978-3-030-04459-6_46.  Google Scholar

[9]

C. Fresneda-Portillo and S. E. Mikhailov, Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.  doi: 10.3934/cpaa.2019137.  Google Scholar

[10]

J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar

[11]

J. Giroire and J. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.  doi: 10.2307/2006329.  Google Scholar

[12]

R. GuttM. KohrS. E. Mikhailov and W. L. Wendland, On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.  doi: 10.1002/mma.4562.  Google Scholar

[13]

B. Hanouzet, Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.   Google Scholar

[14]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp. doi: 10.1007/s00033-016-0696-1.  Google Scholar

[16]

M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar

[17]

M. Kohr and W. L. Wendland, Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.  doi: 10.1080/00036810600963961.  Google Scholar

[18]

M. Kohr and W. L. Wendland, Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.  doi: 10.1016/j.matpur.2019.04.002.  Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.   Google Scholar
[22]

S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.  doi: 10.1016/j.jmaa.2010.12.027.  Google Scholar

[23]

S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.  doi: 10.1016/S0955-7997(02)00030-9.  Google Scholar

[24]

S. E. Mikhailov, Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.  doi: 10.1186/s13661-018-0992-0.  Google Scholar

[25]

S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015.  Google Scholar

[26]

S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar

[27]

S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar

[28]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182. doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[29]

J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[30]

J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129.   Google Scholar

[31]

J. B. Neto, Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.   Google Scholar

[32]

B. Reidinger and O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.  doi: 10.1002/mma.347.  Google Scholar

[33]

O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007. doi: 10.1007/978-0-387-68805-3.  Google Scholar

[34]

R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001. doi: 10.1090/chel/343.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[36]

W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994.  Google Scholar

[37]

W. L. Wendland and J. Zhu, The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.  doi: 10.1016/0895-7177(91)90021-X.  Google Scholar

show all references

References:
[1]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.  doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[2]

C. AmroucheV. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.  doi: 10.1016/S0021-7824(97)89945-X.  Google Scholar

[3]

A. Bossavit, Électromagnétisme, en Vue de la Modélisation, Springer, Berlin, 2003.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility, J. Integral Equ. Appl., 21 (2009), 499-543.  doi: 10.1216/JIE-2009-21-4-499.  Google Scholar

[6]

O. Chkadua, S. E. Mikhailov and D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains, Anal. Appl., 11 (2013), 1350006, 33 pp. doi: 10.1142/S0219530513500061.  Google Scholar

[7]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.  doi: 10.1137/0519043.  Google Scholar

[8]

T. T. Dufera and S. E. Mikhailov, Boundary-domain integral equations for variable-coefficient Dirichlet BVP in 2D unbounded domain, in Analysis, Probability, Applications, and Computations (eds. Lindahl et al), Springer Nature, Switzerland AG, 2019. doi: 10.1007/978-3-030-04459-6_46.  Google Scholar

[9]

C. Fresneda-Portillo and S. E. Mikhailov, Analysis of boundary-domain integral equations to the mixed BVP for a compressible Stokes system with variable viscosity, Commun. Pure Appl. Anal., 18 (2019), 3059-3088.  doi: 10.3934/cpaa.2019137.  Google Scholar

[10]

J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales, Thése de Doctorat d'État, Université Pierre-et-Marie-Curie (Paris VI), 1987. Google Scholar

[11]

J. Giroire and J. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp., 32 (1978), 973-990.  doi: 10.2307/2006329.  Google Scholar

[12]

R. GuttM. KohrS. E. Mikhailov and W. L. Wendland, On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Methods in Appl. Sci., 40 (2017), 7780-7829.  doi: 10.1002/mma.4562.  Google Scholar

[13]

B. Hanouzet, Espaces de Sobolev avec Poids. Application au probleme de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Universita di Padova, 46 (1971), 227-272.   Google Scholar

[14]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in $\mathbb R^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116, 30pp. doi: 10.1007/s00033-016-0696-1.  Google Scholar

[16]

M. Kohr, S. E. Mikhailov and W. L. Wendland, Variational approach for layer potentials of the Stokes system with $L_{\infty}$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems, arXiv: 2002.09990. Google Scholar

[17]

M. Kohr and W. L. Wendland, Variational boundary integral equations for the Stokes system, Appl. Anal., 85 (2006), 1343-1372.  doi: 10.1080/00036810600963961.  Google Scholar

[18]

M. Kohr and W. L. Wendland, Boundary value problems for the Brinkman system with $L_{\infty }$ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach, J. Math. Pures Appl., 131 (2019), 17-63.  doi: 10.1016/j.matpur.2019.04.002.  Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, New York, 1969.  Google Scholar

[20]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1973.  Google Scholar

[21] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.   Google Scholar
[22]

S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.  doi: 10.1016/j.jmaa.2010.12.027.  Google Scholar

[23]

S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients, Eng. Anal. Bound. Elem., 26 (2002), 681-690.  doi: 10.1016/S0955-7997(02)00030-9.  Google Scholar

[24]

S. E. Mikhailov, Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficient on Lipschitz domains, Bound. Value Probl., 87 (2018), 1-52.  doi: 10.1186/s13661-018-0992-0.  Google Scholar

[25]

S. E. Mikhailov and C. F. Portillo, BDIE system to the mixed BVP for the Stokes equations with variable viscosity, in Integral Methods in Science and Engineering: Theoretical and Computational Advances (eds. C. Constanda and A. Kirsh), Springer, Boston, 2015.  Google Scholar

[26]

S. E. Mikhailov and C. F. Portillo, A new family of boundary-domain integral equations for a mixed elliptic BVP with variable coefficient, in Proceedings of the 10th UK Conference on Boundary Integral Methods (ed. P. Harris), Brighton University Press, 2015. Google Scholar

[27]

S. E. Mikhailov and C. F. Portillo, BDIEs for the compressible Stokes system with variable viscosity mixed BVP in bounded domains, in Proceedings of the 11th UK Conference on Boundary Integral Methods (ed. D.J. Chappell), Nottingham Trent Univ., 2017. Google Scholar

[28]

I. Mitrea and M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, T. Am. Math. Soc., 359 (2007), 4143-4182. doi: 10.1090/S0002-9947-07-04146-3.  Google Scholar

[29]

J. Nedelec, Acoustic and Electromagnetic Equations, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4393-7.  Google Scholar

[30]

J. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans $\mathbb{R}^{3}$, RAIRO, 7 (1973), 105-129.   Google Scholar

[31]

J. B. Neto, Inhomogeneous boundary value problems in a half space, Ann. Sc. Sup. Pisa, 19 (1965), 331-365.   Google Scholar

[32]

B. Reidinger and O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Meth. Appl. Sci., 26 (2003), 77-93.  doi: 10.1002/mma.347.  Google Scholar

[33]

O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, Berlin, 2007. doi: 10.1007/978-0-387-68805-3.  Google Scholar

[34]

R. Temam, Navier-Stokes Equations, AMS Chelsea Edition, American Mathematical Society, 2001. doi: 10.1090/chel/343.  Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.  Google Scholar

[36]

W. Varnhorn, The Stokes Equations, Akademie Verlag, Berlin, 1994.  Google Scholar

[37]

W. L. Wendland and J. Zhu, The boundary element method for three dimensional Stokes flow exterior to an open surface, Math. Comput. Model., 6 (1991), 19-42.  doi: 10.1016/0895-7177(91)90021-X.  Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Carlos Fresneda-Portillo. A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5097-5114. doi: 10.3934/cpaa.2020228

[3]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[4]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[5]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[6]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[7]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[8]

Jiankai Xu, Song Jiang, Huoxiong Wu. Some properties of positive solutions for an integral system with the double weighted Riesz potentials. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2117-2134. doi: 10.3934/cpaa.2016030

[9]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[10]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[11]

Sufang Tang, Jingbo Dou. Quantitative analysis of a system of integral equations with weight on the upper half space. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021171

[12]

Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837

[13]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[14]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[15]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[16]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[17]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[18]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[19]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[20]

Wei-Xi Li, Rui Xu. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29 (6) : 4243-4255. doi: 10.3934/era.2021082

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (157)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]