March  2021, 20(3): 1171-1186. doi: 10.3934/cpaa.2021011

The BSE concepts for vector-valued Lipschitz algebras

1. 

Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, IRAN

2. 

Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, IRAN

* Corresponding author

Received  August 2020 Revised  October 2020 Published  March 2021 Early access  February 2021

Let $ (K,d) $ be a compact metric space, $ \mathcal A $ be a commutative semisimple Banach algebra and $ 0<\alpha\leq 1 $. The overall purpose of the present paper is to demonstrate that all BSE concepts of $ {\rm Lip}_\alpha(K,\mathcal A) $ are inherited from $ \mathcal A $ and vice versa. Recently, the authors proved in the case that $ \mathcal A $ is unital, $ {\rm Lip}_\alpha(K,\mathcal A) $ is a BSE-algebra if and only if $ \mathcal A $ is so. In this paper, we generalize this result for an arbitrary commutative semisimple Banach algebra $ \mathcal A $. Furthermore, we investigate the BSE-norm property for $ {\rm Lip}_\alpha(K,\mathcal A) $ and prove that $ {\rm Lip}_\alpha(K,\mathcal A) $ belongs to the class of BSE-norm algebras if and only if $ \mathcal A $ is owned by this class. Moreover, we prove that for any natural number $ n $ with $ n\geq 2 $, if all continuous bounded functions on $ \Delta({\rm Lip}_\alpha(K,\mathcal A)) $ are $ n $-BSE-functions, then $ K $ is finite. As a result, we obtain that $ {\rm Lip}_{\alpha}(K,\mathcal A) $ is a BSE-algebra of type I if and only if $ \mathcal A $ is a BSE-algebra of type I and $ K $ is finite. Furthermore, in according to a result of Kaniuth and Ülger, which disapproves the BSE-property for $ {\rm lip}_{\alpha}K $, we show that for any commutative semisimple Banach algebra $ \mathcal A $, $ {\rm lip}_{\alpha}(K,\mathcal A) $ fails to be a BSE-algebra, as well. Finally, we concentrate on the classical Lipschitz algebra $ {\rm Lip}_\alpha X $, for an arbitrary metric space (not necessarily compact) $ (X,d) $ and $ \alpha>0 $, when $ {\rm Lip}_\alpha X $ separates the points of $ X $. In particular, we show that $ {\rm Lip}_\alpha X $ is a BSE-algebra, as well as a BSE-norm algebra.

Citation: Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011
References:
[1]

F. AbtahiZ. Kamali and M. Toutounchi, The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras, J. Math. Anal. Appl., 479 (2019), 1172-1181.  doi: 10.1016/j.jmaa.2019.06.073.  Google Scholar

[2]

S. Bochner, A theorem on Fourier- Stieltjes integrals, Bull. Amer. Math. Soc., 40 (1934), 271-276.  doi: 10.1090/S0002-9904-1934-05843-9.  Google Scholar

[3]

H. G. Dales, Banach function algebras and BSE-norms, Graduate course during $23^rd$, Banach algebra conference, Oulu, Finland, 2017. Google Scholar

[4]

W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J., 22 (1955), 465-468.   Google Scholar

[5]

K. Esmaeili and H. Mahyar, The character spaces and $\check{S}$ilov boundaries of vector-valued Lipschitz function algebras, Indian J. Pure Appl. Math., 45 (2014), 977-988.  doi: 10.1007/s13226-014-0099-y.  Google Scholar

[6]

J. InoueT. MiuraH. Takagi and S. E. Takahasi, Classification of semisimple commutative Banach algebras of type I, Nihonkai Math. J., 30 (2019), 1-17.   Google Scholar

[7]

C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math., 72 (1977), 99-104.   Google Scholar

[8]

E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010), 4331-4356.  doi: 10.1090/S0002-9947-10-05060-9.  Google Scholar

[9]

R. Larsen., An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.  Google Scholar

[10]

I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc., 40 (1934), 277-278.  doi: 10.1090/S0002-9904-1934-05845-2.  Google Scholar

[11]

D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math., 13 (1963), 1387-1399.   Google Scholar

[12]

S. E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc., 110 (1990), 149-158.  doi: 10.2307/2048254.  Google Scholar

[13]

S. E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japonica, 37 (1992), 47-52.   Google Scholar

show all references

References:
[1]

F. AbtahiZ. Kamali and M. Toutounchi, The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras, J. Math. Anal. Appl., 479 (2019), 1172-1181.  doi: 10.1016/j.jmaa.2019.06.073.  Google Scholar

[2]

S. Bochner, A theorem on Fourier- Stieltjes integrals, Bull. Amer. Math. Soc., 40 (1934), 271-276.  doi: 10.1090/S0002-9904-1934-05843-9.  Google Scholar

[3]

H. G. Dales, Banach function algebras and BSE-norms, Graduate course during $23^rd$, Banach algebra conference, Oulu, Finland, 2017. Google Scholar

[4]

W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J., 22 (1955), 465-468.   Google Scholar

[5]

K. Esmaeili and H. Mahyar, The character spaces and $\check{S}$ilov boundaries of vector-valued Lipschitz function algebras, Indian J. Pure Appl. Math., 45 (2014), 977-988.  doi: 10.1007/s13226-014-0099-y.  Google Scholar

[6]

J. InoueT. MiuraH. Takagi and S. E. Takahasi, Classification of semisimple commutative Banach algebras of type I, Nihonkai Math. J., 30 (2019), 1-17.   Google Scholar

[7]

C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math., 72 (1977), 99-104.   Google Scholar

[8]

E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010), 4331-4356.  doi: 10.1090/S0002-9947-10-05060-9.  Google Scholar

[9]

R. Larsen., An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.  Google Scholar

[10]

I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc., 40 (1934), 277-278.  doi: 10.1090/S0002-9904-1934-05845-2.  Google Scholar

[11]

D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math., 13 (1963), 1387-1399.   Google Scholar

[12]

S. E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc., 110 (1990), 149-158.  doi: 10.2307/2048254.  Google Scholar

[13]

S. E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japonica, 37 (1992), 47-52.   Google Scholar

[1]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[2]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[3]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[4]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[5]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[6]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[7]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[8]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[9]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[10]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[11]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[12]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[13]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[14]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[15]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[16]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[17]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[18]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2021, 4 (1) : 45-59. doi: 10.3934/mfc.2021001

[19]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29 (4) : 2673-2685. doi: 10.3934/era.2021008

[20]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (105)
  • HTML views (136)
  • Cited by (0)

[Back to Top]