In this paper, we consider the positive viscosity solutions for certain fully nonlinear uniformly elliptic equations in unbounded cylinder with zero boundary condition. After establishing an Aleksandrov-Bakelman-Pucci maximum principle, we classify all positive solutions as three categories in unbounded cylinder. Two special solution spaces (exponential growth at one end and exponential decay at the another) are one dimensional, independently, while solutions in the third solution space can be controlled by the solutions in the other two special solution spaces under some conditions, respectively.
Citation: |
[1] |
S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations: bounds on eigenfunctions of n-body schrodinger operations, Princeton, New Jersey: Princeton University Press, 1982.
![]() ![]() |
[2] |
B. Avelin and V. Julin, A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term, J. Funct. Anal., 272 (2017), 3176 – 3215.
doi: 10.1016/j.jfa.2016.12.026.![]() ![]() ![]() |
[3] |
M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains, Abstr. Appl. Anal., 2008 (2008), 1-20.
doi: 10.1155/2008/178534.![]() ![]() ![]() |
[4] |
J. Bao, L. Wang and C. Zhou, Positive solutions to elliptic equations in unbounded cylinder, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1389-1400.
doi: 10.3934/dcdsb.2016001.![]() ![]() ![]() |
[5] |
L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence, 1995.
doi: 10.1090/coll/043.![]() ![]() ![]() |
[6] |
L. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., 49 (1996), 365-398.
doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.3.CO;2-V.![]() ![]() ![]() |
[7] |
L. Cafarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981) 621–640.
doi: 10.1512/iumj.1981.30.30049.![]() ![]() ![]() |
[8] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[9] |
I. Capuzzo-Dolcetta, F. Leoni and A. Vitolo, The Aleksandrof Backelman Pucci weak maximum priciple for Fully nonlinear equtions in unbounded domains, Commun. Partial Differ. Equ., 30 (2005), 1863-1881.
doi: 10.1080/03605300500300030.![]() ![]() ![]() |
[10] |
S. J. Gardiner, The Martin boundary of NTA strips, Bull. London Math. Soc., 22 (1990), 163-166.
doi: 10.1112/blms/22.2.163.![]() ![]() ![]() |
[11] |
M. Ghergu and J. Pres, Positive harmonic functions that vanish on a subset of a cylindrical surface, Potential Anal., 31 (2009), 147-181.
doi: 10.1007/s11118-009-9129-5.![]() ![]() ![]() |
[12] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, Heidelberg, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[13] |
E. M. Landis and N. S. Nadirashvili, Positive solutions of second-order equations in unbounded domains, Mat. Sb., 126 (1985), 133-139.
![]() ![]() |
[14] |
R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172.
doi: 10.2307/1990054.![]() ![]() ![]() |
[15] |
M. G. Shur, The martin boundary for a linear, elliptic, second-order operator, Izv. Akad. Nauk. Ser. Mat., 27 (1963), 45-60.
![]() ![]() |
[16] |
A. Swiech, W1, p interior estimates for solutions of fully nonlinear, uniformly elliptic equations, Adv. Differ. Equ., 2 (1997), 1005-1027.
![]() ![]() |
[17] |
P. Wang, Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order I. Lipschitz free boundaries are $C^{1, \alpha}$, Commun. Pure Appl. Math., 53 (2000), 799-810.
doi: 10.1002/(SICI)1097-0312(200007)53:7<799::AID-CPA1>3.0.CO;2-Q.![]() ![]() ![]() |
[18] |
L. Wang, L. Wang and C. Zhou, The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders, J. Korean Math. Soc., 57 (2020), 1573-1590.
doi: 10.4134/JKMS.j190836.![]() ![]() ![]() |