• Previous Article
    Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations
  • CPAA Home
  • This Issue
  • Next Article
    Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders
March  2021, 20(3): 1263-1296. doi: 10.3934/cpaa.2021020

Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation

1. 

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

2. 

Department of Mathematics, Chungnam National University, Daejeon 34134, Korea

* Corresponding author

Received  August 2020 Revised  December 2020 Published  February 2021

Fund Project: The first author is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2019R1A6A3A01091340) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) No. 2015R1A3A2031159

In this paper, we prove the continuity of global attractors and the Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation if every equilibrium of the unperturbed equation is hyperbolic.

Citation: Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020
References:
[1]

G. S. AragãoA. L. Pereira and M. C. Pereira, Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.  doi: 10.1007/s10884-014-9412-z.  Google Scholar

[2]

A. Arbieto and C. A. Morales, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.  doi: 10.3934/dcds.2017151.  Google Scholar

[3]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[4]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.  doi: 10.1016/j.jde.2008.12.014.  Google Scholar

[5]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37. doi: 10.1080/03605300008821506.  Google Scholar

[6]

A. V. Babin and S. Yu. Pilyugin, Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.  Google Scholar

[7]

P. S. Barbosa and A. L. Pereira, Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.   Google Scholar

[8]

P. S. BarbosaA. L. Pereira and M. C. Pereira, Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.  doi: 10.1007/s10231-016-0620-5.  Google Scholar

[9]

L. A. F. De OliveiraA. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.   Google Scholar

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[11]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981.  Google Scholar

[12] D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005.   Google Scholar
[13]

M. Hurley, Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.  doi: 10.2307/2000204.  Google Scholar

[14]

J. A. LangaJ. C. RobinsonA. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.  doi: 10.1016/j.jde.2006.11.016.  Google Scholar

[15]

J. LeeN. Nguyen and V. M. Toi, Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.  doi: 10.1016/j.jde.2019.11.097.  Google Scholar

[16]

D. S. Li and P. E. Kloeden, Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.  doi: 10.3934/dcds.2005.13.1007.  Google Scholar

[17]

A. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.  doi: 10.1016/j.jde.2007.05.018.  Google Scholar

[18] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[19]

R. F. Thomas, Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.  doi: 10.1016/0022-0396(85)90140-8.  Google Scholar

show all references

References:
[1]

G. S. AragãoA. L. Pereira and M. C. Pereira, Attractors for a nonlinear parabolic problem with terms concentrating on the boundary, J. Dynam. Differ. Equ., 26 (2014), 871-888.  doi: 10.1007/s10884-014-9412-z.  Google Scholar

[2]

A. Arbieto and C. A. Morales, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.  doi: 10.3934/dcds.2017151.  Google Scholar

[3]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[4]

J. M. ArrietaA. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains. III. Continuity of attractors, J. Differ. Equ., 247 (2009), 225-259.  doi: 10.1016/j.jde.2008.12.014.  Google Scholar

[5]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Attractors for parabolic problems with nonlinear boundary condition. Uniform bounds, Commun. Partial Differ. Equ., 25 (2000) 1–37. doi: 10.1080/03605300008821506.  Google Scholar

[6]

A. V. Babin and S. Yu. Pilyugin, Continuous dependence of an attractor on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.  Google Scholar

[7]

P. S. Barbosa and A. L. Pereira, Continuity of attractors for $C^1$ perturbations of a smooth domain, Electron. J. Differ. Equ., 2020 (2020), 1-31.   Google Scholar

[8]

P. S. BarbosaA. L. Pereira and M. C. Pereira, Continuity of attractors for a family of $C^1$ perturbations of the square, Ann. Mat. Pura Appl., 196 (2017), 1365-1398.  doi: 10.1007/s10231-016-0620-5.  Google Scholar

[9]

L. A. F. De OliveiraA. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain, Electron. J. Differ. Equ., 100 (2005), 1-18.   Google Scholar

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, Philadelphia, 2011. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[11]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 1981.  Google Scholar

[12] D. B. Henry, Perturbation of the Boundary for Boundary Value Problems, Cambridge Univ. Press, 2005.   Google Scholar
[13]

M. Hurley, Fixed points of topological stable flows, Trans. Amer. Math. Soc., 294 (1986), 625-633.  doi: 10.2307/2000204.  Google Scholar

[14]

J. A. LangaJ. C. RobinsonA. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differ. Equ., 234 (2007), 607-625.  doi: 10.1016/j.jde.2006.11.016.  Google Scholar

[15]

J. LeeN. Nguyen and V. M. Toi, Gromov-Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differ. Equ., 269 (2020), 125-147.  doi: 10.1016/j.jde.2019.11.097.  Google Scholar

[16]

D. S. Li and P. E. Kloeden, Robustness of asymptotic stability to small time delays, Discrete Contin. Dyn. S., 13 (2005), 1007-1034.  doi: 10.3934/dcds.2005.13.1007.  Google Scholar

[17]

A. L. Pereira and M. C. Pereira, Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain, J. Differ. Equ., 239 (2007), 343-370.  doi: 10.1016/j.jde.2007.05.018.  Google Scholar

[18] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[19]

R. F. Thomas, Topological stability: Some fundamental properties, J. Differ. Equ., 59 (1985), 103-122.  doi: 10.1016/0022-0396(85)90140-8.  Google Scholar

[1]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[2]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[3]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[4]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[5]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[6]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[7]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[8]

Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108

[9]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[10]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[11]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[12]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[13]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021137

[14]

Carlos Fresneda-Portillo. A new family of boundary-domain integral equations for the diffusion equation with variable coefficient in unbounded domains. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5097-5114. doi: 10.3934/cpaa.2020228

[15]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[16]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[17]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[18]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[19]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[20]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (63)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]