doi: 10.3934/cpaa.2021026

Expanding solutions of quasilinear parabolic equations

Department of Mathematics, University of Patras, 26504 Rio Patras, Greece

Received  February 2020 Revised  January 2021 Published  March 2021

Fund Project: The author was supported by Deutsche Forschungsgemeinschaft, grant SCHR 319/9-1

By using the theory of maximal $ L^{q} $-regularity and methods of singular analysis, we show a Taylor's type expansion–with respect to the geodesic distance around an arbitrary point–for solutions of quasilinear parabolic equations on closed manifolds. The powers of the expansion are determined explicitly by the local geometry, whose reflection to the solutions is established through the local space asymptotics.

Citation: Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021026
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.  doi: 10.1016/0362-546X(88)90073-9.  Google Scholar

[2]

H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Verlag, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, Birkhäuser Verlag, 2001. doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[4]

P. Clément and S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl., 3 (1993/94), 17-32.   Google Scholar

[5]

G. Da Prato and P. Grisvard, Sommes d' opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387.   Google Scholar

[6]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 205-223.   Google Scholar

[7]

G. Dore, $L^{p}$ regularity for abstract differential equations, in Functional Analysis and Related Topics, Springer Verlag, 1993. doi: 10.1007/BFb0085472.  Google Scholar

[8]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.  doi: 10.1007/BF01163654.  Google Scholar

[9]

N. Kalton and L. Weis, The $H^{\infty}$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.  doi: 10.1007/s002080100231.  Google Scholar

[10]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[11]

P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, Springer Verlag, 2016. doi: 10.1007/978-3-319-26654-1.  Google Scholar

[12]

Y. Pomeau and P. Manneville, Wavelength selection in cellular flows, Phys. Lett. A, 75 (1980), 296-298.   Google Scholar

[13]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, Birkhäuser Verlag, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[14]

N. Roidos, Complex powers for cone differential operators and the heat equation on manifolds with conical singularities, Proceedings of the Amer. Math. Soc., 146 (2018), 2995-3007.  doi: 10.1090/proc/13986.  Google Scholar

[15]

N. Roidos, The Swift-Hohenberg equation on conic manifolds, J. Math. Anal. Appl., 481 (2020), 123491. doi: 10.1016/j.jmaa.2019.123491.  Google Scholar

[16]

N. Roidos and E. Schrohe, Existence and maximal $L^p$-regularity of solutions for the porous medium equation on manifolds with conical singularities, Commun. Partial Differ. Equ., 41 (2016), 1441-1471.  doi: 10.1080/03605302.2016.1219745.  Google Scholar

[17]

N. Roidos and E. Schrohe, Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities, Commun. Partial Differ. Equ., 43 (2018), 1456-1484.  doi: 10.1080/03605302.2018.1517788.  Google Scholar

[18]

N. Roidos, E. Schrohe and J. Seiler, Bounded $H_{\infty}$-calculus for boundary value problems on manifolds with conical singularities, preprint, arXiv: 1906.03701. Google Scholar

[19]

E. Schrohe and J. Seiler, Bounded $H_{\infty}$-calculus for cone differential operators, J. Evol. Equ., 18 (2018), 1395-1425.  doi: 10.1007/s00028-018-0447-1.  Google Scholar

[20]

E. Schrohe and J. Seiler, The resolvent of closed extensions of cone differential operators, Canad. J. Math., 57 (2005), 771-811.  doi: 10.4153/CJM-2005-031-1.  Google Scholar

[21]

J. Swift and P. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328.   Google Scholar

[22]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, Pitman Publishing, 1979.  Google Scholar

[23]

M. TlidiM. Georgiou and P. Mandel, Transverse patterns in nascent optical bistability, Phys. Rev. A, 48 (1993), 4506-4609.   Google Scholar

[24] J. L. Vázquez, The Porous Medium Equation, Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007.   Google Scholar
[25]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_{p}$-regularity, Math. Ann., 319 (2001), 735-758.  doi: 10.1007/PL00004457.  Google Scholar

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal., 12 (1988), 895-919.  doi: 10.1016/0362-546X(88)90073-9.  Google Scholar

[2]

H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Verlag, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, Birkhäuser Verlag, 2001. doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[4]

P. Clément and S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl., 3 (1993/94), 17-32.   Google Scholar

[5]

G. Da Prato and P. Grisvard, Sommes d' opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl., 54 (1975), 305-387.   Google Scholar

[6]

L. De Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), 205-223.   Google Scholar

[7]

G. Dore, $L^{p}$ regularity for abstract differential equations, in Functional Analysis and Related Topics, Springer Verlag, 1993. doi: 10.1007/BFb0085472.  Google Scholar

[8]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.  doi: 10.1007/BF01163654.  Google Scholar

[9]

N. Kalton and L. Weis, The $H^{\infty}$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345.  doi: 10.1007/s002080100231.  Google Scholar

[10]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[11]

P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, Springer Verlag, 2016. doi: 10.1007/978-3-319-26654-1.  Google Scholar

[12]

Y. Pomeau and P. Manneville, Wavelength selection in cellular flows, Phys. Lett. A, 75 (1980), 296-298.   Google Scholar

[13]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, Birkhäuser Verlag, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[14]

N. Roidos, Complex powers for cone differential operators and the heat equation on manifolds with conical singularities, Proceedings of the Amer. Math. Soc., 146 (2018), 2995-3007.  doi: 10.1090/proc/13986.  Google Scholar

[15]

N. Roidos, The Swift-Hohenberg equation on conic manifolds, J. Math. Anal. Appl., 481 (2020), 123491. doi: 10.1016/j.jmaa.2019.123491.  Google Scholar

[16]

N. Roidos and E. Schrohe, Existence and maximal $L^p$-regularity of solutions for the porous medium equation on manifolds with conical singularities, Commun. Partial Differ. Equ., 41 (2016), 1441-1471.  doi: 10.1080/03605302.2016.1219745.  Google Scholar

[17]

N. Roidos and E. Schrohe, Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities, Commun. Partial Differ. Equ., 43 (2018), 1456-1484.  doi: 10.1080/03605302.2018.1517788.  Google Scholar

[18]

N. Roidos, E. Schrohe and J. Seiler, Bounded $H_{\infty}$-calculus for boundary value problems on manifolds with conical singularities, preprint, arXiv: 1906.03701. Google Scholar

[19]

E. Schrohe and J. Seiler, Bounded $H_{\infty}$-calculus for cone differential operators, J. Evol. Equ., 18 (2018), 1395-1425.  doi: 10.1007/s00028-018-0447-1.  Google Scholar

[20]

E. Schrohe and J. Seiler, The resolvent of closed extensions of cone differential operators, Canad. J. Math., 57 (2005), 771-811.  doi: 10.4153/CJM-2005-031-1.  Google Scholar

[21]

J. Swift and P. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328.   Google Scholar

[22]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, Pitman Publishing, 1979.  Google Scholar

[23]

M. TlidiM. Georgiou and P. Mandel, Transverse patterns in nascent optical bistability, Phys. Rev. A, 48 (1993), 4506-4609.   Google Scholar

[24] J. L. Vázquez, The Porous Medium Equation, Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007.   Google Scholar
[25]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_{p}$-regularity, Math. Ann., 319 (2001), 735-758.  doi: 10.1007/PL00004457.  Google Scholar

[1]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[2]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[3]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041

[4]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[5]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[6]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[9]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[10]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[11]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[14]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[15]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[16]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[17]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[18]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[19]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[20]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (20)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]