April  2021, 20(4): 1431-1445. doi: 10.3934/cpaa.2021027

A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations

1. 

School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical, Sciences, Central China Normal University, Wuhan, 430079, China

2. 

Department of Mathematical Sciences, Yeshiva University, New York, NY, USA

Received  September 2020 Revised  December 2020 Published  April 2021 Early access  March 2021

Fund Project: This work was supported by NSFC grant 11771166, Hubei Key Laboratory of Mathematical Sciences, Program for Changjiang Scholars and Innovative Research Team in University #IRT_17R46 and China Scholarship Council

In this paper, we proved a fractional Kirchhoff version of Hopf lemma for anti-symmetry functions and applied it to prove the symmetry and monotonicity of solutions for fractional Kirchhoff equations in the whole space by method of moving planes. We also obtain radially symmetry and monotonicity of solutions for fractional Kirchhoff equations in the unit ball. As far as we know, this is the first time to apply direct method of moving planes to fractional Kirchhoff problems.

Citation: Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1431-1445. doi: 10.3934/cpaa.2021027
References:
[1]

C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2001), 43-56. 

[2]

P. and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.

[3]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[5]

W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[6]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[7]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.

[8]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. S., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.

[9]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.

[10]

X. He and W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853-890.  doi: 10.1007/s11425-017-9399-6.

[11]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[12]

C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.

[13]

G. Li and Y. Niu, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation, Acta Math. Sci., 40 (2020), 1-23.  doi: 10.1007/s10473-020-0107-y.

[14]

Y. Li and W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $ {\mathbb R}^n$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.

[15]

L. J. L, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.  doi: 10.1016/S0304-0208(08)70870-3.

[16]

S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N. S.), 96 (1975), 152–166.

[17]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $ {\mathbb R}^n$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.

[18]

B. Zhang and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.  doi: 10.1017/prm.2018.105.

show all references

References:
[1]

C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2001), 43-56. 

[2]

P. and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.

[3]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[5]

W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[6]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[7]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.

[8]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. S., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.

[9]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.

[10]

X. He and W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853-890.  doi: 10.1007/s11425-017-9399-6.

[11]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[12]

C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.

[13]

G. Li and Y. Niu, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation, Acta Math. Sci., 40 (2020), 1-23.  doi: 10.1007/s10473-020-0107-y.

[14]

Y. Li and W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $ {\mathbb R}^n$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.

[15]

L. J. L, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.  doi: 10.1016/S0304-0208(08)70870-3.

[16]

S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N. S.), 96 (1975), 152–166.

[17]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $ {\mathbb R}^n$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.

[18]

B. Zhang and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.  doi: 10.1017/prm.2018.105.

[1]

Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006

[2]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[3]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[4]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[5]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control and Related Fields, 2022, 12 (1) : 225-243. doi: 10.3934/mcrf.2021019

[6]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[7]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354

[9]

Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3065-3092. doi: 10.3934/cpaa.2021096

[10]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[11]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[12]

Ryan Hynd, Francis Seuffert. On the symmetry and monotonicity of Morrey extremals. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5285-5303. doi: 10.3934/cpaa.2020238

[13]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[14]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[15]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[16]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[17]

Mingqi Xiang, Die Hu. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4609-4629. doi: 10.3934/dcdss.2021125

[18]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[19]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[20]

Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (258)
  • HTML views (114)
  • Cited by (0)

Other articles
by authors

[Back to Top]