American Institute of Mathematical Sciences

April  2021, 20(4): 1431-1445. doi: 10.3934/cpaa.2021027

A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations

 1 School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical, Sciences, Central China Normal University, Wuhan, 430079, China 2 Department of Mathematical Sciences, Yeshiva University, New York, NY, USA

Received  September 2020 Revised  December 2020 Published  March 2021

Fund Project: This work was supported by NSFC grant 11771166, Hubei Key Laboratory of Mathematical Sciences, Program for Changjiang Scholars and Innovative Research Team in University #IRT_17R46 and China Scholarship Council

In this paper, we proved a fractional Kirchhoff version of Hopf lemma for anti-symmetry functions and applied it to prove the symmetry and monotonicity of solutions for fractional Kirchhoff equations in the whole space by method of moving planes. We also obtain radially symmetry and monotonicity of solutions for fractional Kirchhoff equations in the unit ball. As far as we know, this is the first time to apply direct method of moving planes to fractional Kirchhoff problems.

Citation: Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1431-1445. doi: 10.3934/cpaa.2021027
References:
 [1] C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2001), 43-56.   Google Scholar [2] P. and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar [3] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar [4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [5] W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar [6] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [8] W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. S., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar [9] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar [10] X. He and W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853-890.  doi: 10.1007/s11425-017-9399-6.  Google Scholar [11] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar [12] C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.  Google Scholar [13] G. Li and Y. Niu, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation, Acta Math. Sci., 40 (2020), 1-23.  doi: 10.1007/s10473-020-0107-y.  Google Scholar [14] Y. Li and W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb R}^n$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.  Google Scholar [15] L. J. L, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.  doi: 10.1016/S0304-0208(08)70870-3.  Google Scholar [16] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N. S.), 96 (1975), 152–166.  Google Scholar [17] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in ${\mathbb R}^n$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar [18] B. Zhang and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.  doi: 10.1017/prm.2018.105.  Google Scholar

show all references

References:
 [1] C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Commun. Appl. Nonlinear Anal., 8 (2001), 43-56.   Google Scholar [2] P. and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605.  Google Scholar [3] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar [4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [5] W. Chen and C. Li, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar [6] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [8] W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. S., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar [9] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar [10] X. He and W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853-890.  doi: 10.1007/s11425-017-9399-6.  Google Scholar [11] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar [12] C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.  doi: 10.1090/proc/14342.  Google Scholar [13] G. Li and Y. Niu, The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation, Acta Math. Sci., 40 (2020), 1-23.  doi: 10.1007/s10473-020-0107-y.  Google Scholar [14] Y. Li and W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb R}^n$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.  Google Scholar [15] L. J. L, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.  doi: 10.1016/S0304-0208(08)70870-3.  Google Scholar [16] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N. S.), 96 (1975), 152–166.  Google Scholar [17] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in ${\mathbb R}^n$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar [18] B. Zhang and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.  doi: 10.1017/prm.2018.105.  Google Scholar
 [1] Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $p$-Laplacians. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 [2] Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 [3] Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 [4] Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019 [5] Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 [6] Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 [7] Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354 [8] Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91 [9] Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $S_n$-symmetry. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823 [10] Ryan Hynd, Francis Seuffert. On the symmetry and monotonicity of Morrey extremals. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5285-5303. doi: 10.3934/cpaa.2020238 [11] Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009 [12] Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 [13] Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 [14] Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010 [15] Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091 [16] Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157 [17] Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123 [18] Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009 [19] Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683 [20] Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

2019 Impact Factor: 1.105

Article outline

[Back to Top]