April  2021, 20(4): 1497-1519. doi: 10.3934/cpaa.2021030

An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

Received  October 2020 Revised  January 2021 Published  April 2021 Early access  March 2021

Fund Project: The author is supported in part by the Ministry of Science and Technology, Taiwan (Grant No. 108-2115-M-390-007-MY2,108-2811-M-390-500)

In this paper, we study an eigenvalue problem for Schrödinger-Poisson system with indefinite nonlinearity and potential well as follows:
$ \begin{equation*} \begin{cases} -\Delta u+\mu V(x)u+K(x)\phi u = \lambda f(x)u+g(x)|u|^{p-2}u\ \ &\mbox{in}\ \ \mathbb{R}^3, \\ -\Delta \phi = K(x)u^2\ \ &\mbox{in}\ \ \mathbb{R}^3, \end{cases} \end{equation*} $
where
$ 4\leq p<6 $
, the parameters
$ \mu, \lambda>0 $
,
$ V\in C(\mathbb{R}^3) $
is a potential well with the bottom
$ \overline\Omega: = \{x\in\mathbb{R}^3 : V(x) = 0\} $
, and the functions
$ f $
and
$ g $
are allowed to be sign-changing. By establishing an approximate estimate between the positive principal eigenvalue of
$ -\Delta u+\mu V(x)u = \lambda f(x)u $
in
$ \mathbb{R}^3 $
and the positive principal eigenvalue
$ \lambda_1(f_{\Omega}) $
of
$ -\Delta u = \lambda f_{\Omega}(x)u $
in
$ \Omega $
, we prove that at least a positive solution exists in
$ 0<\lambda\leq\lambda_1(f_{\Omega}) $
while at least two positive solutions exist in
$ \lambda>\lambda_1(f_{\Omega}) $
and near
$ \lambda_1(f_{\Omega}) $
, where
$ f_{\Omega}: = f|_{\Omega} $
. The results are obtained via variational method and steep potential. Furthermore, we also study the concentration of solutions as
$ \mu\to\infty $
and the decay rate of solutions at infinity.
Citation: Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1497-1519. doi: 10.3934/cpaa.2021030
References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differ. Equ., 1 (1993), 439-475.  doi: 10.1007/BF01206962.

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[3]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[5]

T. BartschA. Pankov and Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.  doi: 10.1142/S0219199701000494.

[6]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^3$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[7]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[8]

H. Brézis and E. H. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[9]

G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.

[10]

J. Chabrowski and D. G. Costa, On a class of Schrödinger-Type equations with indefinite weight functions, Commun. Partial Differ. Equ., 33 (2008), 1368-1394. doi: 10.1080/03605300601088880.

[11]

J. Chen, Multiple positive solutions of a class of nonautonomous Schrödinger-Poisson systems, Nonlinear Anal., 21 (2015), 13-26. doi: 10.1016/j.nonrwa.2014.06.002.

[12]

D. G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\mathbb{R}^3$, Calc. Var. Partial Differ. Equ., 13 (2001), 159-189. doi: 10.1007/PL00009927.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[14]

M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrodinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502. doi: 10.1063/1.4941036.

[15]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990. doi: 10.1007/978-3-642-74331-3.

[16]

L. Huang, E. M. Rocha and J. Chen, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differ. Equ., 255 (2013), 2463-2483. doi: 10.1016/j.jde.2013.06.022.

[17]

Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608. doi: 10.1016/j.jde.2011.05.006.

[18]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109-145. 

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[20]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, 1990. doi: 10.1007/978-3-662-02624-3.

[21]

Z. Shen and Z. Han, Multiple solutions for a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Math. Anal. Appl., 426 (2015), 839-854. doi: 10.1016/j.jmaa.2015.01.071.

[22]

J. Sun, T. F. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 68 (2017), 1-22. doi: 10.1007/s00033-017-0817-5.

[23]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche Math., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x.

[24]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[25]

T. F. Wu, On a class of nonlocal nonlinear Schrödinger equations with potential well, Adv. Nonlinear Anal., 9 (2020), 665-689. doi: 10.1515/anona-2020-0020.

[26]

Y. Ye and C. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 53 (2015), 383-411. doi: 10.1007/s00526-014-0753-6.

[27]

F. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differ. Equ., 269 (2020), 85-106.  doi: 10.1016/j.jde.2020.07.013.

[28]

L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equ., 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005.

show all references

References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differ. Equ., 1 (1993), 439-475.  doi: 10.1007/BF01206962.

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[3]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[5]

T. BartschA. Pankov and Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.  doi: 10.1142/S0219199701000494.

[6]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^3$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[7]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[8]

H. Brézis and E. H. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[9]

G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.

[10]

J. Chabrowski and D. G. Costa, On a class of Schrödinger-Type equations with indefinite weight functions, Commun. Partial Differ. Equ., 33 (2008), 1368-1394. doi: 10.1080/03605300601088880.

[11]

J. Chen, Multiple positive solutions of a class of nonautonomous Schrödinger-Poisson systems, Nonlinear Anal., 21 (2015), 13-26. doi: 10.1016/j.nonrwa.2014.06.002.

[12]

D. G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\mathbb{R}^3$, Calc. Var. Partial Differ. Equ., 13 (2001), 159-189. doi: 10.1007/PL00009927.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[14]

M. Du, L. Tian, J. Wang and F. Zhang, Existence and asymptotic behavior of solutions for nonlinear Schrodinger-Poisson systems with steep potential well, J. Math. Phys., 57 (2016), 031502. doi: 10.1063/1.4941036.

[15]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990. doi: 10.1007/978-3-642-74331-3.

[16]

L. Huang, E. M. Rocha and J. Chen, Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Differ. Equ., 255 (2013), 2463-2483. doi: 10.1016/j.jde.2013.06.022.

[17]

Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608. doi: 10.1016/j.jde.2011.05.006.

[18]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109-145. 

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[20]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, 1990. doi: 10.1007/978-3-662-02624-3.

[21]

Z. Shen and Z. Han, Multiple solutions for a class of Schrödinger-Poisson system with indefinite nonlinearity, J. Math. Anal. Appl., 426 (2015), 839-854. doi: 10.1016/j.jmaa.2015.01.071.

[22]

J. Sun, T. F. Wu and Y. Wu, Existence of nontrivial solution for Schrödinger-Poisson systems with indefinite steep potential well, Z. Angew. Math. Phys., 68 (2017), 1-22. doi: 10.1007/s00033-017-0817-5.

[23]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche Math., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x.

[24]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[25]

T. F. Wu, On a class of nonlocal nonlinear Schrödinger equations with potential well, Adv. Nonlinear Anal., 9 (2020), 665-689. doi: 10.1515/anona-2020-0020.

[26]

Y. Ye and C. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 53 (2015), 383-411. doi: 10.1007/s00526-014-0753-6.

[27]

F. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differ. Equ., 269 (2020), 85-106.  doi: 10.1016/j.jde.2020.07.013.

[28]

L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equ., 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005.

[1]

Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112

[2]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[3]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[4]

Kaimin Teng, Xian Wu. Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1157-1187. doi: 10.3934/cpaa.2022014

[5]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[6]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039

[7]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[8]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[9]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[10]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[11]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[12]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

[13]

Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339

[14]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure and Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[15]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29 (3) : 2475-2488. doi: 10.3934/era.2020125

[16]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[17]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[18]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic and Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[19]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[20]

Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (164)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]