April  2021, 20(4): 1737-1754. doi: 10.3934/cpaa.2021039

Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems

1. 

Dip. di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, and RISM – Riemann International School of Mathematics, Villa Toeplitz, Via G.B. Vico, 46 – 21100 Varese, Italy

2. 

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

* Corresponding author

Received  July 2020 Revised  January 2021 Published  April 2021 Early access  March 2021

Fund Project: The third named author was supported by NSFC(No.11871123)

We consider in
$ \mathbb R^3 $
the singularly perturbed Schrödinger-Poisson system
$ \begin{equation*} \begin{cases} - \varepsilon^2\Delta v+V(x)v+\phi(x)v = f(v)\\ - \Delta\phi = v^2 . \end{cases} \end{equation*} $
Using variational techniques, we construct solutions which concentrate around the saddle points of the external potential
$ V $
, as
$ \varepsilon \rightarrow 0 $
.
Citation: Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039
References:
[1]

P. BechoucheN. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Commun. Pure Appl. Math., 54 (2001), 851-890.  doi: 10.1002/cpa.3004.  Google Scholar

[2]

D. Bonheure, J. Di Cosmo and C. Mercuri, Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity, Commun. Contemp. Math., 14 (2012), 31 pp. doi: 10.1142/S0219199712500095.  Google Scholar

[3]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singularly complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.   Google Scholar

[4]

J. ByeonJ. J. Zhang and W. M. Zou, Singularly perturbed nonlinear Dirichlet problems involving critical growth, Calc. Var. Partial Differ. Equ., 47 (2013), 65-85.  doi: 10.1007/s00526-012-0511-6.  Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer 2014. Google Scholar

[6]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.  Google Scholar

[7]

P. L. Cunha, Existence and concentration of positive bound states for Schrödinger-Poisson systems with potential functions, Electron. J. Differ. Equ., (2015), 15 pp.  Google Scholar

[8]

P. d'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009.  Google Scholar

[9]

M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982/1983), 1-14.  doi: 10.1017/S0308210500031607.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren 224, Springer, Berlin Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 19 (2009), 877-910.  doi: 10.1142/S0218202509003656.  Google Scholar

[12]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[13]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ \mathbb R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[14]

X. Liu and J. Zhao, $p$-Laplacian Equations in $ \mathbb R^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[15]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schr${\rm{\ddot d}}$inger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[16]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141-164.  doi: 10.1142/S0218202505003939.  Google Scholar

[17]

M. A. S. Souto, On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth, Abstr. Appl. Anal., 7 (2002), 547-561.  doi: 10.1155/S1085337502206028.  Google Scholar

[18]

K. Teng and P. R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[19]

J. WangL. TianJ. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $ \mathbb R^3$, Calc. Var. Partial Differ. Equ., 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.  Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[21]

M. YangZ. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system, Nonlinear Anal., 71 (2009), 730-739.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[22]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differ. Equ., 56 (2017), 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[23]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[24]

J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55 (2014), 14 pp. doi: 10.1063/1.4868617.  Google Scholar

[25]

H. Zhu, Semi-classical states for Schrödinger-Poisson systems on $ \mathbb R^3$, Electron. J. Differ. Equ., (2016), 15 pp.  Google Scholar

show all references

References:
[1]

P. BechoucheN. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Commun. Pure Appl. Math., 54 (2001), 851-890.  doi: 10.1002/cpa.3004.  Google Scholar

[2]

D. Bonheure, J. Di Cosmo and C. Mercuri, Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity, Commun. Contemp. Math., 14 (2012), 31 pp. doi: 10.1142/S0219199712500095.  Google Scholar

[3]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singularly complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.   Google Scholar

[4]

J. ByeonJ. J. Zhang and W. M. Zou, Singularly perturbed nonlinear Dirichlet problems involving critical growth, Calc. Var. Partial Differ. Equ., 47 (2013), 65-85.  doi: 10.1007/s00526-012-0511-6.  Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer 2014. Google Scholar

[6]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.  Google Scholar

[7]

P. L. Cunha, Existence and concentration of positive bound states for Schrödinger-Poisson systems with potential functions, Electron. J. Differ. Equ., (2015), 15 pp.  Google Scholar

[8]

P. d'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009.  Google Scholar

[9]

M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982/1983), 1-14.  doi: 10.1017/S0308210500031607.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren 224, Springer, Berlin Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 19 (2009), 877-910.  doi: 10.1142/S0218202509003656.  Google Scholar

[12]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[13]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ \mathbb R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[14]

X. Liu and J. Zhao, $p$-Laplacian Equations in $ \mathbb R^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[15]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schr${\rm{\ddot d}}$inger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[16]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141-164.  doi: 10.1142/S0218202505003939.  Google Scholar

[17]

M. A. S. Souto, On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth, Abstr. Appl. Anal., 7 (2002), 547-561.  doi: 10.1155/S1085337502206028.  Google Scholar

[18]

K. Teng and P. R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[19]

J. WangL. TianJ. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $ \mathbb R^3$, Calc. Var. Partial Differ. Equ., 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.  Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[21]

M. YangZ. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system, Nonlinear Anal., 71 (2009), 730-739.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[22]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differ. Equ., 56 (2017), 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[23]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[24]

J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55 (2014), 14 pp. doi: 10.1063/1.4868617.  Google Scholar

[25]

H. Zhu, Semi-classical states for Schrödinger-Poisson systems on $ \mathbb R^3$, Electron. J. Differ. Equ., (2016), 15 pp.  Google Scholar

[1]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[4]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[6]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[7]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 759-774. doi: 10.3934/dcdsb.2012.17.759

[10]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[11]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Hui Zhang, Jun Wang, Fubao Zhang. Semiclassical states for fractional Choquard equations with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 519-538. doi: 10.3934/cpaa.2019026

[14]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[15]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[18]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (95)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]