We consider mild solutions to the 3D time-dependent Oseen system with homogeneous Dirichlet boundary conditions, under weak assumptions on the data. Such solutions are defined via the semigroup generated by the Oseen operator in $ L^q. $ They turn out to be also $ L^q $-weak solutions to the Oseen system. On the basis of known results about spatial asymptotics of the latter type of solutions, we then derive pointwise estimates of the spatial decay of mild solutions. The rate of decay depends in particular on $ L^p $-integrability in time of the external force.
Citation: |
[1] |
P. Deuring, Spatial decay of time-dependent Oseen flows, SIAM J. Math. Anal., 41 (2009), 886-922.
doi: 10.1137/080723831.![]() ![]() ![]() |
[2] |
P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb{R}^3 $: spatial decay of the velocity, Math. Bohemica, 138 (2013), 299-324.
![]() ![]() |
[3] |
P. Deuring, Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2757-2776.
doi: 10.3934/dcds.2013.33.2757.![]() ![]() ![]() |
[4] |
P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal., 45 (2013), 1388-1421.
doi: 10.1137/120872255.![]() ![]() ![]() |
[5] |
P. Deuring, Oseen resolvent estimates with small resolvent parameter, J. Diff. Equ., 265 (2018), 280-311.
doi: 10.1016/j.jde.2018.02.033.![]() ![]() ![]() |
[6] |
P. Deuring, Pointwise decay in space and in time for incompressible flow around a rigid body moving with constant velocity, J. Math. Fluid Mech., 21 (2019), article 11.
doi: 10.1007/s00021-019-0414-9.![]() ![]() ![]() |
[7] |
P. Deuring, The 3D time-dependent Oseen system: link between $L^p$-integrability in time and pointwise decay in space, to appear in J. Math. Fluid Mech, available from https://hal.archives-ouvertes.fr/hal-02465649.
![]() |
[8] |
P. Deuring, $L^q$-weak solutions to the time-dependent Oseen system: decay estimates, to appear in Math. Nachr, available from https://hal.archives-ouvertes.fr/hal-02465651.
![]() |
[9] |
P. Deuring, Time-dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, preprint, Available from https://hal.archives-ouvertes.fr/hal-02508815.
doi: 10.1137/080723831.![]() ![]() ![]() |
[10] |
P. Deuring and W. Varnhorn, On Oseen resolvent estimates, Diff. Int. Equat., 23 (2010), 1139-1149.
![]() ![]() |
[11] |
Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain, Indiana Univ. Math. J., 53 (2004), 1291-1330.
doi: 10.1512/iumj.2004.53.2463.![]() ![]() ![]() |
[12] |
Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7 (2005), 339-367.
doi: 10.1007/s00021-004-0132-8.![]() ![]() ![]() |
[13] |
R. Farwig and J. Neustupa, On the spectrum of an Oseen-type operator arising from flow around a rotating body, Int. Equ. Oper. Theory, 62 (2008), 169-189.
doi: 10.1007/s00020-008-1616-3.![]() ![]() ![]() |
[14] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2$^nd$ edition, Springer, New York e.a., 2011.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
[15] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, American Mathematical Society, Providence R. I., 1957.
![]() ![]() |
[16] |
T. Hishida, Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle, Math. Ann., 372 (2018), 915-949.
doi: 10.1007/s00208-018-1649-0.![]() ![]() ![]() |
[17] |
T. Hishida, Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains, Arch. Rational Mech. Anal., 238 (2020), 215-254.
doi: 10.1007/s00205-020-01541-3.![]() ![]() ![]() |
[18] |
G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, 1979.
![]() ![]() |
[19] |
T. Kobayashi and Y. Shibata, On the Oseen equation in three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45.
doi: 10.1007/s002080050134.![]() ![]() ![]() |
[20] |
H. Kozono, $L^1$-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319-340.
doi: 10.1007/s002080050224.![]() ![]() ![]() |
[21] |
H. Kozono, Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann., 320 (2001), 709-730.
doi: 10.1007/PL00004492.![]() ![]() ![]() |
[22] |
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
![]() ![]() |
[23] |
R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36 (1984), 497-522.
doi: 10.2969/jmsj/03630497.![]() ![]() ![]() |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, Springer, New York, 1983.
doi: 10.1007/PL00004457.![]() ![]() ![]() |
[25] |
L. Weis, Operator-valued Fourier multiplier theorems and maximal regularity, Math. Ann., 319 (2001), 735-758.
![]() |
[26] |
K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980.
![]() ![]() |