In this paper, we prove that the jump function and variation of averaging operators with rough variable kernels are bounded on $ L^{2}(\mathbb{R}^{n}) $ if $ \Omega\in L^{\infty}(\mathbb{R}^{n})\times L^{q}(\mathbb{S}^{n-1}) $ for $ q>2(n-1)/n $ and $ n\geq2 $. Moreover, we obtain the boundedness on weighted $ L^{p}(\mathbb{R}^{n}) $ spaces of the jump function and $ \rho $-variations for averaging operators with smooth variable kernels. Finally, we extend the result to the Morrey spaces.
Citation: |
[1] |
K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions
and singular integrals, Studia Math., 69 (1981), 19-31.
doi: 10.4064/sm-69-1-19-31.![]() ![]() ![]() |
[2] |
J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études SCI. Publ. Math., 69 (1989), 5–41.
doi: 10.1007/BF02698838.![]() ![]() ![]() |
[3] |
A. P. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc., 78 (1955), 209-224.
doi: 10.2307/1992955.![]() ![]() ![]() |
[4] |
A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921.
doi: 10.2307/2372441.![]() ![]() ![]() |
[5] |
A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Applicable Anal., 7 (1978), 221-238.
doi: 10.1080/00036817808839193.![]() ![]() ![]() |
[6] |
Y. Chen, Boundedness of the commutator of Marcinkiewicz integral with rough variable kernel, Acta Math. Sin. (Engl. Ser.), 25 (2009), 983-1000.
doi: 10.1007/s10114-009-7681-y.![]() ![]() ![]() |
[7] |
Y. Chen, Y. Ding and R. Li, $L^{2}$-boundedness for maximal commutators with rough variable kernels, Rev. Mat. Iberoamericana, 27 (2011), 361-391.
doi: 10.4171/RMI/640.![]() ![]() ![]() |
[8] |
Y. Chen, Y. Ding, G. Hong and H. Liu, Weighted jump and variational inequalities
for rough operators, J. Funct. Anal., 274 (2018), 2446-2475.
doi: 10.1016/j.jfa.2018.01.009.![]() ![]() ![]() |
[9] |
J. T. Campbell, R. L. Jones, K. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher
dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.
doi: 10.1090/S0002-9947-02-03189-6.![]() ![]() ![]() |
[10] |
Y. Ding, G. Hong and H. Liu, Jump and variational inequalities for rough operators, J. Fourier Anal. Appl., 23 (2017), 679-711.
doi: 10.1007/s00041-016-9484-8.![]() ![]() ![]() |
[11] |
G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.
doi: 10.1006/jfan.1993.1032.![]() ![]() ![]() |
[12] |
R. L. Jones, R. Kaufman, J. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Syst., 18 (1998), 889-935.
doi: 10.1017/S0143385798108349.![]() ![]() ![]() |
[13] |
R. L. Jones, J. M. Rosenblatt and M. Wierdl, Oscillation inequalities for rectangles, Proc. Am. Math. Soc., 129 (2000), 1349-1358.
doi: 10.1090/S0002-9939-00-06032-9.![]() ![]() ![]() |
[14] |
R. L. Jones, A. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.
doi: 10.1090/S0002-9947-08-04538-8.![]() ![]() ![]() |
[15] |
D. Kurtz, Littlewood-Paley and multipliers theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.
doi: 10.2307/1998156.![]() ![]() ![]() |
[16] |
B. Krause and P. Zorin-Kranich, Weighted and vector-valued variational estimates for ergodic averages, Ergodic Theory Dynam. Syst., 38 (2018), 244-256.
![]() ![]() |
[17] |
H. Liu, Jump estimates for operators associated with polynomials, J. Math. Anal. Appl., 467 (2018), 785-806.
doi: 10.1016/j.jmaa.2018.07.012.![]() ![]() ![]() |
[18] |
T. Ma, J. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal., 268 (2015), 376-416.
doi: 10.1016/j.jfa.2014.10.008.![]() ![]() ![]() |
[19] |
T. Ma, J. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 60 (2017), 1419-1442.
doi: 10.1007/s11425-016-9012-7.![]() ![]() ![]() |
[20] |
M. Mirek, E. M. Stein and B. Trojan, $l^{p}(\mathbb{Z}^{d})$-estimates for discrete operator of Radon type: variational estimates, Invent. Math., 209 (2017), 665-748.
doi: 10.1007/s00222-017-0718-4.![]() ![]() ![]() |
[21] |
E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.
doi: 10.1090/S0002-9947-1958-0092943-6.![]() ![]() ![]() |