We study steady uniform hypersonic-limit Euler flows passing a finite cylindrically symmetric conical body in the Euclidean space $ \mathbb{R}^3 $, and its interaction with downstream static gas lying behind the tail of the body. Motivated by Newton's theory of infinite-thin shock layers, we propose and construct Radon measure solutions with density containing Dirac measures supported on surfaces and prove the Newton-Busemann pressure law of hypersonic aerodynamics. It happens that if the pressure of the downstream static gas is quite large, the Radon measure solution terminates at a finite distance from the tail of the body. The main difficulty of the analysis is a correct definition of Radon measure solutions. The results are helpful to understand mathematically some physical phenomena and formulas about hypersonic inviscid flows.
Citation: |
[1] |
J. D. Jr. Anderson, Modern Compressible Flow: With Historical Perspective, 3$^rd$ edition, McGraw-Hill, 2003.
![]() |
[2] |
J. D. Jr. Anderson, Hypersonic and High-Temperature Gas Dynamics, 2$^nd$ edition, AIAA, 2006.
![]() |
[3] |
S. Chen, A free boundary value problem of Euler system arising in supersonic flow past a curved cone, Tohoku Math. J., 54 (2002), 105-120.
![]() ![]() |
[4] |
S. Chen, Existence of stationary supersonic flows past a pointed body, Arch. Ration. Mech. Anal., 156 (2001), 141-181.
doi: 10.1007/s002050100121.![]() ![]() ![]() |
[5] |
S. Chen, Z. Geng and D. Li, The existence and stability of conic shock waves, J. Math. Anal. Appl., 277 (2003), 512-532.
doi: 10.1016/S0022-247X(02)00581-4.![]() ![]() ![]() |
[6] |
S. Chen and D. Li., Supersonic flow past a symmetrically curved cone, Indiana U. Math. J., 49 (2000), 1411-1435.
doi: 10.1512/iumj.2000.49.1928.![]() ![]() ![]() |
[7] |
S. Chen and D. Li, Conical shock waves for an isentropic Euler system, P. Roy. Soc. Edinb. A., 135 (2005), 1109-1127.
doi: 10.1017/S0308210500004297.![]() ![]() ![]() |
[8] |
S. Chen and D. Li, Conical shock waves in supersonic flow, J. Differ. Equ., 269 (2020), 595-611.
doi: 10.1016/j.jde.2019.12.018.![]() ![]() ![]() |
[9] |
S. Chen, Z. Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone, Commun. Math. Phys., 228 (2002), 47-84.
doi: 10.1007/s002200200652.![]() ![]() ![]() |
[10] |
S. Chen and C. Yi, Global solutions for supersonic flow past a delta wing, SIAM J. Math. Anal., 47 (2015), 80-126.
doi: 10.1137/140963157.![]() ![]() ![]() |
[11] |
G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.
doi: 10.1137/S0036141001399350.![]() ![]() ![]() |
[12] |
G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D. Nonlinear Phenomena, 189 (2004), 141-165.
doi: 10.1016/j.physd.2003.09.039.![]() ![]() ![]() |
[13] |
H. Cheng and H. Yang, Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow, Acta Appl. Math., 113 (2011), 323-348.
doi: 10.1007/s10440-010-9602-6.![]() ![]() ![]() |
[14] |
G. G. Chernyi, Introduction to Hypersonic Flow, Academic Press, New York and London, 1961.
![]() ![]() |
[15] |
D. Cui and H. Yin, Global supersonic conic shock wave for the steady supersonic flow past a cone: polytropic gas, J. Differ. Equ., 246 (2009), 641-669.
doi: 10.1016/j.jde.2008.07.031.![]() ![]() ![]() |
[16] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[17] |
D. Hu and Y. Zhang, Global conical shock wave for the steady supersonic flow past a curved cone, SIAM J. Math. Anal., 51 (2019), 2372-2389.
doi: 10.1137/18M1179924.![]() ![]() ![]() |
[18] |
F. Huang and Z. Wang, Well posedness for pressureless flow, Commun. Math. Phys., 222 (2001), 117-146.
doi: 10.1007/s002200100506.![]() ![]() ![]() |
[19] |
Y. Jin, A. Qu and H. Yuan, On two-dimensional steady Hypersonic-limit Euler flows passing ramps and Radon measure solutions of compressible Euler equations, preprint, arXiv: 1909.03624v1.
![]() |
[20] |
J. Kuang, W. Xiang and Y. Zhang, Hypersonic similarity for the two dimensional steady potential flow with large data, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 37 (2020), 1379-1423.
doi: 10.1016/j.anihpc.2020.05.002.![]() ![]() ![]() |
[21] |
K. Louie and J. R. Ockendon, Mathematical aspects of the theory of inviscid hypersonic flow, Philosophical Transactions of the Royal Society of London. Series A., 335 (1991), 121-138.
doi: 10.1098/rsta.1991.0039.![]() ![]() ![]() |
[22] |
M. Nedeljkov, Shadow waves: entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.
doi: 10.1007/s00205-009-0281-2.![]() ![]() ![]() |
[23] |
A. Paiva, Formation of $\delta$-shock waves in isentropic fluids, Zeitschrift Für Angewandte Mathematik und Physik, 71 (2020), 110.
doi: 10.1007/s00033-020-01332-6.![]() ![]() ![]() |
[24] |
A. Qu, L. Wang and H. Yuan, Radon measure solutions for steady hypersonic-limit Euler flows passing two-dimensional finite non-symmetric obstacles and interactions of free concentration layers, Commun. Math. Sci., to appear.
![]() |
[25] |
A. Qu and H. Yuan, Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton's sine-squared law, J. Differ. Equ., 269 (2020), 495-522.
doi: 10.1016/j.jde.2019.12.012.![]() ![]() ![]() |
[26] |
A. Qu, H. Yuan and Q. Zhao, Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge, Zeitschrift Für Angewandte Mathematik und Mechanik, 100 (2020), e201800225.
doi: 10.1002/zamm. 201800225.![]() ![]() ![]() |
[27] |
Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differ. Equ., 247 (2009), 1817-1850.
doi: 10.1016/j.jde.2009.05.010.![]() ![]() ![]() |
[28] |
Z. Wang and Q. Zhang, The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations, Acta Math. Sci., 32 (2012), 825-841.
doi: 10.1016/S0252-9602(12)60064-2.![]() ![]() ![]() |
The upstream hypersonic-limit flow is separated from the downstream static gas by an axially-symmetric free concentration interface