-
Previous Article
Spectral properties of ordinary differential operators admitting special decompositions
- CPAA Home
- This Issue
-
Next Article
Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay
Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body
1. | Faculty of Mathematics and Physics, Charles University Prague, Sokolovská 83,186 75 Prague 8, Czech Republic |
2. | Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK |
3. | Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey |
We prove the existence of a unique large-data global-in-time weak solution to a class of models of the form $ \boldsymbol{u}_{tt} = \mbox{div }\mathbb{T} + \boldsymbol{f} $ for viscoelastic bodies exhibiting strain-limiting behaviour, where the constitutive equation, relating the linearised strain tensor $ \boldsymbol{\varepsilon}( \boldsymbol{u}) $ to the Cauchy stress tensor $ \mathbb{T} $, is assumed to be of the form $ \boldsymbol{\varepsilon}( \boldsymbol{u}_t) + \alpha \boldsymbol{\varepsilon}( \boldsymbol{u}) = F( \mathbb{T}) $, where we define \(F(\mathbb{T}) = (1 + | \mathbb{T}|^a)^{-\frac{1}{a}} \mathbb{T}\), for constant parameters $ \alpha \in (0,\infty) $ and $ a \in (0,\infty) $, in any number $ d $ of space dimensions, with periodic boundary conditions. The Cauchy stress $ \mathbb{T} $ is shown to belong to $ L^{1}(Q)^{d \times d} $ over the space-time domain $ Q $. In particular, in three space dimensions, if $ a \in (0,\frac{2}{7}) $, then in fact $ \mathbb{T} \in L^{1+\delta}(Q)^{d \times d} $ for a $ \delta > 0 $, the value of which depends only on $ a $.
References:
[1] |
L. Beck, M. Bulíček, J. Málek and E. Süli,
On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth, Arch. Ration. Mech. Anal., 225 (2017), 717-769.
doi: 10.1007/s00205-017-1113-4. |
[2] |
M. Bulíček, P. Kaplický and M. Steinhauer,
On existence of a classical solution to a generalized Kelvin-Voigt model, Pacific J. Math., 262 (2013), 11-33.
doi: 10.2140/pjm.2013.262.11. |
[3] |
M. Bulíček, J. Málek, K. R. Rajagopal and E. Süli,
On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci., 1 (2014), 283-332.
doi: 10.4171/EMSS/7. |
[4] |
M. Bulíček, J. Málek and K. R. Rajagopal,
On Kelvin–Voigt model and its generalizations, Evol. Equ. Control Theory, 1 (2012), 17-42.
doi: 10.3934/eect.2012.1.17. |
[5] |
M. Bulíček, J. Málek and E. Süli,
Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20 (2015), 92-118.
doi: 10.1177/1081286514543601. |
[6] |
C. Canuto and A. Quarteroni,
Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), 67-86.
doi: 10.1090/S0025-5718-1982-0637287-3. |
[7] |
M. Chirita and C. M. Ionescu, Models of biomimetic tissues for vascular grafts, in On biomimetics, In-Tech, 2011, 43–52.
doi: 10.5772/18248. |
[8] |
J. C. Criscione and K. R. Rajagopal,
On the modeling of the non-linear response of soft elastic bodies, International Journal of Non-Linear Mechanics, 56 (2013), 20-24.
doi: 10.1016/j.ijnonlinmec.2013.05.004. |
[9] |
H. A. Erbay and Y. Şengül,
Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, International Journal of Non-Linear Mechanics, 77 (2015), 61-68.
doi: 10.1016/j.ijnonlinmec.2015.07.005. |
[10] |
H. A. Erbay and Y. Şengül, A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity, Z. Angew. Math. Phys., 71 (2020), Paper No. 94, 10 pp.
doi: 10.1007/s00033-020-01315-7. |
[11] |
H. A. Erbay, A. Erkip and Y. Şengül,
Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity, J. Differential Equations, 269 (2020), 9720-9739.
doi: 10.1016/j.jde.2020.06.052. |
[12] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. |
[13] |
A. D. Freed and K. R. Rajagopal,
A viscoelastic model for describing the response of biological fibers, Acta Mech., 277 (2016), 3367-3380.
doi: 10.1007/s00707-016-1673-7. |
[14] |
H. Itou, V. A. Kovtunenko and K. R. Rajagopal,
On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids, 23 (2018), 433-444.
doi: 10.1177/1081286517709517. |
[15] |
H. Itou, V. A. Kovtunenko and K. R. Rajagopal,
Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Models Methods Appl. Sci., 29 (2019), 355-372.
doi: 10.1142/S0218202519500118. |
[16] |
K. R. Rajagopal,
On implicit constitutive theories, Appl. Math., 48 (2003), 279-319.
doi: 10.1023/A:1026062615145. |
[17] |
K. R. Rajagopal,
A note on a reappraisal and generalization of the Kelvin–Voigt model, Mechanics Research Communications, 36 (2009), 232-235.
doi: 10.1016/j.mechrescom.2008.09.005. |
[18] |
K. R. Rajagopal,
On a new class of models in elasticity, Math. Comput. Appl., 15 (2010), 506-528.
doi: 10.3390/mca15040506. |
[19] |
K. R. Rajagopal,
Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16 (2011), 122-139.
doi: 10.1177/1081286509357272. |
[20] |
K. R. Rajagopal,
On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225 (2014), 1545-1553.
doi: 10.1007/s00707-013-1015-y. |
[21] |
K. R. Rajagopal and G. Saccomandi,
Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys., 65 (2014), 1003-1010.
doi: 10.1007/s00033-013-0362-9. |
[22] |
T. Roubíček, Nonlinear partial differential equations with applications, 2$^{nd}$ edition, Birkhäuser/Springer Basel AG, Basel, 2013. |
[23] |
M. Ruzhansky and M. Sugimoto,
On global inversion of homogeneous maps, Bull. Math. Sci., 5 (2015), 13-18.
doi: 10.1007/s13373-014-0059-1. |
[24] |
T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara and and T. Sakuma,
Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science (New York, N.Y.), 300 (2003), 464-467.
doi: 10.1126/science.1081957. |
[25] |
Y. Şengül,
Viscoelasticity with limiting strain, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 57-70.
doi: 10.3934/dcdss.2020330. |
[26] |
J. Warga, Optimal control of differential and functional equations, Academic Press, New York-London, 1972.
![]() ![]() |
show all references
References:
[1] |
L. Beck, M. Bulíček, J. Málek and E. Süli,
On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth, Arch. Ration. Mech. Anal., 225 (2017), 717-769.
doi: 10.1007/s00205-017-1113-4. |
[2] |
M. Bulíček, P. Kaplický and M. Steinhauer,
On existence of a classical solution to a generalized Kelvin-Voigt model, Pacific J. Math., 262 (2013), 11-33.
doi: 10.2140/pjm.2013.262.11. |
[3] |
M. Bulíček, J. Málek, K. R. Rajagopal and E. Süli,
On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci., 1 (2014), 283-332.
doi: 10.4171/EMSS/7. |
[4] |
M. Bulíček, J. Málek and K. R. Rajagopal,
On Kelvin–Voigt model and its generalizations, Evol. Equ. Control Theory, 1 (2012), 17-42.
doi: 10.3934/eect.2012.1.17. |
[5] |
M. Bulíček, J. Málek and E. Süli,
Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20 (2015), 92-118.
doi: 10.1177/1081286514543601. |
[6] |
C. Canuto and A. Quarteroni,
Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), 67-86.
doi: 10.1090/S0025-5718-1982-0637287-3. |
[7] |
M. Chirita and C. M. Ionescu, Models of biomimetic tissues for vascular grafts, in On biomimetics, In-Tech, 2011, 43–52.
doi: 10.5772/18248. |
[8] |
J. C. Criscione and K. R. Rajagopal,
On the modeling of the non-linear response of soft elastic bodies, International Journal of Non-Linear Mechanics, 56 (2013), 20-24.
doi: 10.1016/j.ijnonlinmec.2013.05.004. |
[9] |
H. A. Erbay and Y. Şengül,
Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, International Journal of Non-Linear Mechanics, 77 (2015), 61-68.
doi: 10.1016/j.ijnonlinmec.2015.07.005. |
[10] |
H. A. Erbay and Y. Şengül, A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity, Z. Angew. Math. Phys., 71 (2020), Paper No. 94, 10 pp.
doi: 10.1007/s00033-020-01315-7. |
[11] |
H. A. Erbay, A. Erkip and Y. Şengül,
Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity, J. Differential Equations, 269 (2020), 9720-9739.
doi: 10.1016/j.jde.2020.06.052. |
[12] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. |
[13] |
A. D. Freed and K. R. Rajagopal,
A viscoelastic model for describing the response of biological fibers, Acta Mech., 277 (2016), 3367-3380.
doi: 10.1007/s00707-016-1673-7. |
[14] |
H. Itou, V. A. Kovtunenko and K. R. Rajagopal,
On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids, 23 (2018), 433-444.
doi: 10.1177/1081286517709517. |
[15] |
H. Itou, V. A. Kovtunenko and K. R. Rajagopal,
Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Models Methods Appl. Sci., 29 (2019), 355-372.
doi: 10.1142/S0218202519500118. |
[16] |
K. R. Rajagopal,
On implicit constitutive theories, Appl. Math., 48 (2003), 279-319.
doi: 10.1023/A:1026062615145. |
[17] |
K. R. Rajagopal,
A note on a reappraisal and generalization of the Kelvin–Voigt model, Mechanics Research Communications, 36 (2009), 232-235.
doi: 10.1016/j.mechrescom.2008.09.005. |
[18] |
K. R. Rajagopal,
On a new class of models in elasticity, Math. Comput. Appl., 15 (2010), 506-528.
doi: 10.3390/mca15040506. |
[19] |
K. R. Rajagopal,
Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16 (2011), 122-139.
doi: 10.1177/1081286509357272. |
[20] |
K. R. Rajagopal,
On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225 (2014), 1545-1553.
doi: 10.1007/s00707-013-1015-y. |
[21] |
K. R. Rajagopal and G. Saccomandi,
Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys., 65 (2014), 1003-1010.
doi: 10.1007/s00033-013-0362-9. |
[22] |
T. Roubíček, Nonlinear partial differential equations with applications, 2$^{nd}$ edition, Birkhäuser/Springer Basel AG, Basel, 2013. |
[23] |
M. Ruzhansky and M. Sugimoto,
On global inversion of homogeneous maps, Bull. Math. Sci., 5 (2015), 13-18.
doi: 10.1007/s13373-014-0059-1. |
[24] |
T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara and and T. Sakuma,
Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science (New York, N.Y.), 300 (2003), 464-467.
doi: 10.1126/science.1081957. |
[25] |
Y. Şengül,
Viscoelasticity with limiting strain, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 57-70.
doi: 10.3934/dcdss.2020330. |
[26] |
J. Warga, Optimal control of differential and functional equations, Academic Press, New York-London, 1972.
![]() ![]() |
[1] |
Yasemin Şengül. Viscoelasticity with limiting strain. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330 |
[2] |
Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617 |
[3] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[4] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[5] |
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335 |
[6] |
Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053 |
[7] |
Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391 |
[8] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[9] |
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 |
[10] |
Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230 |
[11] |
Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110 |
[12] |
Merab Svanadze. On the theory of viscoelasticity for materials with double porosity. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2335-2352. doi: 10.3934/dcdsb.2014.19.2335 |
[13] |
Zhen Lei. Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2861-2871. doi: 10.3934/dcds.2014.34.2861 |
[14] |
Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777 |
[15] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4489-4522. doi: 10.3934/dcds.2022062 |
[16] |
Kunio Hidano, Kazuyoshi Yokoyama. Global existence and blow up for systems of nonlinear wave equations related to the weak null condition. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4385-4414. doi: 10.3934/dcds.2022058 |
[17] |
Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128 |
[18] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[19] |
Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115 |
[20] |
Boyan Jonov, Paul Kessenich, Thomas C. Sideris. Global existence of small displacement solutions for Hookean incompressible viscoelasticity in 3D. Kinetic and Related Models, 2022, 15 (4) : 621-649. doi: 10.3934/krm.2021038 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]