• Previous Article
    Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition
  • CPAA Home
  • This Issue
  • Next Article
    A generalized complex Ginzburg-Landau equation: Global existence and stability results
May  2021, 20(5): 2039-2064. doi: 10.3934/cpaa.2021057

Global well-posedness for effectively damped wave models with nonlinear memory

1. 

Department of Mathematics, Faculty of exact sciences and informatics, University of Chlef, P.O. Box 50, 02000, Ouled-Fares, Chlef, Algeria

2. 

Laboratory of mechanic and energetic, University of Chlef, Algeria

3. 

Faculty for Mathematics and Computer Science, TU Bergakademie Freiberg, Prüferstr. 9, 09596, Freiberg, Germany

* Corresponding author

Received  October 2020 Revised  February 2021 Published  May 2021 Early access  April 2021

Fund Project: The research of this paper is supported by DAAD, Erasmus+ Project between the Hassiba Benbouali University of Chlef and TU Bergakademie Freiberg, 2015-1-DE01-KA107-002026, during the stay of the first author at Technical University Bergakademie Freiberg within the periods April 2016 to June 2016, and a stay of one month April 2017 supported by Hassiba Benbouali University

In this paper, we study the Cauchy problem for a special family of effectively damped wave models with nonlinear memory on the right-hand side. Our goal is to prove global (in time) well-posedness results for Sobolev solutions. Due to the effective dissipation the model is parabolic like from the point of view of energy decay estimates of the corresponding linear Cauchy problem with vanishing right-hand side. For this reason there appears a Fujita type exponent as a threshold. Applying modern tools from Harmonic Analysis we prove several results by taking into consideration different regularity properties of the data.

Citation: Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057
References:
[1]

T. CazanaveF. Dickstein and F. D. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862-874.  doi: 10.1016/j.na.2006.11.042.

[2]

S. Cui, Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., 43 (2001), 293-323.  doi: 10.1016/S0362-546X(99)00195-9.

[3]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal., 95 (2014), 130-145.  doi: 10.1016/j.na.2013.09.006.

[4]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.

[5]

M. D'Abbicco and S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67 (2016), 18 pp. doi: 10.1007/s00033-016-0655-x.

[6]

M. D'AbbiccoS. Lucente and M. Reissig, Semilinear wave equations with effective damping, Chin. Ann. Math., Serie B, 34 (2013), 345-380.  doi: 10.1007/s11401-013-0773-0.

[7]

A. Djaouti and M. Reissig, Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data, Nonlinear Anal., 175 (2018), 28-55.  doi: 10.1016/j.na.2018.05.006.

[8]

M. R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, Cham, 2018. doi: 10.1007/978-3-319-66456-9.

[9]

A. Fino, Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal., 74 (2011), 5495-5505.  doi: 10.1016/j.na.2011.01.039.

[10]

T. Hadj Kaddour and M. Reissig, Blow-up results for effectively damped wave models with nonlinear memory, 21 pp., accepted for publication in CPAA.

[11]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter series in nonlinear analysis and applications, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.

[12]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation, J. Differ. Equ., 232 (2007), 74-103.  doi: 10.1016/j.jde.2006.06.004.

show all references

References:
[1]

T. CazanaveF. Dickstein and F. D. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862-874.  doi: 10.1016/j.na.2006.11.042.

[2]

S. Cui, Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., 43 (2001), 293-323.  doi: 10.1016/S0362-546X(99)00195-9.

[3]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal., 95 (2014), 130-145.  doi: 10.1016/j.na.2013.09.006.

[4]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.

[5]

M. D'Abbicco and S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67 (2016), 18 pp. doi: 10.1007/s00033-016-0655-x.

[6]

M. D'AbbiccoS. Lucente and M. Reissig, Semilinear wave equations with effective damping, Chin. Ann. Math., Serie B, 34 (2013), 345-380.  doi: 10.1007/s11401-013-0773-0.

[7]

A. Djaouti and M. Reissig, Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data, Nonlinear Anal., 175 (2018), 28-55.  doi: 10.1016/j.na.2018.05.006.

[8]

M. R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, Cham, 2018. doi: 10.1007/978-3-319-66456-9.

[9]

A. Fino, Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal., 74 (2011), 5495-5505.  doi: 10.1016/j.na.2011.01.039.

[10]

T. Hadj Kaddour and M. Reissig, Blow-up results for effectively damped wave models with nonlinear memory, 21 pp., accepted for publication in CPAA.

[11]

T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter series in nonlinear analysis and applications, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110812411.

[12]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation, J. Differ. Equ., 232 (2007), 74-103.  doi: 10.1016/j.jde.2006.06.004.

[1]

Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

[2]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[3]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183

[6]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[7]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[8]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[9]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[10]

Tayeb Hadj Kaddour, Michael Reissig. Blow-up results for effectively damped wave models with nonlinear memory. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2687-2707. doi: 10.3934/cpaa.2020239

[11]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure and Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[12]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093

[13]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[14]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[15]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[16]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[17]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[18]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

[19]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[20]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (168)
  • HTML views (125)
  • Cited by (0)

Other articles
by authors

[Back to Top]