• Previous Article
    Blow-up results for effectively damped wave models with nonlinear memory
  • CPAA Home
  • This Issue
  • Next Article
    Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition
doi: 10.3934/cpaa.2021062

A new Hodge operator in discrete exterior calculus. Application to fluid mechanics

Laboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR 7356 La Rochelle Université – CNRS, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

* Corresponding author

1 Current address: École Nationale Supérieure de Mécanique et des Microtechniques, 26, rue de l'Épitaphe - 25030 Besan¸con Cedex, France

Received  August 2020 Revised  February 2021 Published  April 2021

Fund Project: The first author is partially supported by the Nouvelle-Aquitaine region and the European Union through CPER Bâtiment Durable, Axe 3 "Qualité des Environnements Intérieurs (QEI)", convention number P-2017-BAFE-102

This article introduces a new and general construction of discrete Hodge operator in the context of Discrete Exterior Calculus (DEC). This discrete Hodge operator permits to circumvent the well-centeredness limitation on the mesh with the popular diagonal Hodge. It allows a dual mesh based on any interior point, such as the incenter or the barycenter. It opens the way towards mesh-optimized discrete Hodge operators. In the particular case of a well-centered triangulation, it reduces to the diagonal Hodge if the dual mesh is circumcentric. Based on an analytical development, this discrete Hodge does not make use of Whitney forms, and is exact on piecewise constant forms, whichever interior point is chosen for the construction of the dual mesh. Numerical tests oriented to the resolution of fluid mechanics problems and thermal transfer are carried out. Convergence on various types of mesh is investigated. Flat and non-flat domains are considered.

Citation: Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021062
References:
[1]

P. Alotto and I. Perugia, Matrix properties of a vector potential cell method for magnetostatics, IEEE Trans. Magnet., 40 (2004), 1045-1048.   Google Scholar

[2]

D. Arnold, Finite Element Exterior Calculus, SIAM-Society for Industrial and Applied Mathematics, 2018. doi: 10.1137/1.9781611975543.ch1.  Google Scholar

[3]

D. ArnoldR. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), 1-155.  doi: 10.1017/S0962492906210018.  Google Scholar

[4]

D. ArnoldR. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bullet. Amer. Math. Soc., 47 (2010), 281-354.  doi: 10.1090/S0273-0979-10-01278-4.  Google Scholar

[5]

B. Auchmann and S. Kurz, A geometrically defined discrete Hodge operator on simplicial cells, IEEE Trans. Magnet., 42 (2006), 643-646.   Google Scholar

[6] C. Blanes and S. Fernando, A Concise Introduction to Geometric Numerical Integration, CRC Press, 2016.   Google Scholar
[7]

P. Bochev and J. Hyman, Compatible Spatial Discretizations, Springer, 2006. doi: 10.1007/0-387-38034-5_5.  Google Scholar

[8]

A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, Science, Measurement and Technology, IEE Proceedings A, 135 (1988), 493-500.   Google Scholar

[9] A. Bossavit, Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press, 1998.   Google Scholar
[10]

A. Bossavit, On the geometry of electromagnetism: (1) Affine space, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 17-28.   Google Scholar

[11]

A. Bossavit, On the geometry of electromagnetism: (2) Geometrical objects, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 114-123.   Google Scholar

[12]

A. Bossavit, On the geometry of electromagnetism: (3) Integration, Stokes, Faraday's law, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 233-240.   Google Scholar

[13]

A. Bossavit, On the geometry of electromagnetism: (4) Maxwell's house, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 318-326.   Google Scholar

[14]

A. Bossavit, Computational electromagnetism and geometry : (3) Convergence, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 401-408.   Google Scholar

[15]

A. Bossavit, Computational electromagnetism and geometry: (1) Network equations, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 150-159.   Google Scholar

[16]

A. Bossavit, Computational electromagnetism and geometry: (2) Network constitutive laws, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 204-301.   Google Scholar

[17]

A. Bossavit, Computational electromagnetism and geometry : (4): From degrees of freedom to fields, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 102-109.   Google Scholar

[18]

A. Bossavit, Computational electromagnetism and geometry : (5): The Galerkin Hodge, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 203-209.   Google Scholar

[19]

A. Bossavit, Discretization of electromagnetic problems: The "generalized finite differences" approach, in Numer. Method. Electrom., Elsevier, 2005, 105-197.  Google Scholar

[20]

C. Cassidy and G. Lord, A Square Acutely Triangulated, Baywood Publishing Co.. Inc., 1980.  Google Scholar

[21]

M. CinalliF. EdelvikR. Schuhmann and T. Weiland, Consistent material operators for tetrahedral grids based on geometrical principles, Int. J. Numer. Model., 17 (2004), 487-507.   Google Scholar

[22]

K. Crane, F. de Goes, M. Desbrun and P. Schr$\ddot{o}$der, Digital geometry processing with discrete exterior calculus, in ACM SIGGRAPH 2013 courses, SIGGRAPH'13, ACM, 2013. Google Scholar

[23]

M. Desbrun, A. Hirani, M. Leok and J. Marsden, Discrete exterior calculus, arXivmath/0508341. Google Scholar

[24]

S. ElcottY. TongE. KansoP. Schr$\ddot{o}$der and M. Desbrun, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26 (2015), 377-388.   Google Scholar

[25] M. Fecko, Differential Geometry and Lie Groups for Physicists, Cambridge University Press, 2006.  doi: 10.1017/CBO9780511755590.  Google Scholar
[26]

C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Method. Eng., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[27]

A. Gillette, Notes on Discrete Exterior Calculus, Technical report, University of Texas at Austin, 2009. Google Scholar

[28]

E. Grispun, P. Schr$\ddot{o}$der and M. Desbrun, Discrete differential geometry: An applied introduction, in ACM SIGGRAPH 2005 course notes, SIGGRAPH'05, ACM, 2005. Google Scholar

[29]

W. Hairer, G. Wanner and C. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer Series in Computational Mathematics, Springer, 2006.  Google Scholar

[30]

R. Hiptmair, Discrete Hodge operators, Numerische Mathematik, 90 (2001), 265-289.  doi: 10.1007/s002110100295.  Google Scholar

[31]

A. Hirani, Discrete Exterior Calculus, Phd thesis, California Institute of Technology, Pasadena, CA, USA, 2003.  Google Scholar

[32]

A. HiraniK. Kalyanaraman and E. VanderZee, Delaunay Hodge star, Computer-Aided Design, 45 (2013), 540-544.  doi: 10.1016/j.cad.2012.10.038.  Google Scholar

[33]

A. HiraniK. Nakshatrala and J. Chaudhry, Numerical method for Darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics, 16 (2015), 151-169.  doi: 10.1080/15502287.2014.977500.  Google Scholar

[34]

J. Lee, Introduction to Smooth Manifolds, 2nd edition, Graduate Texts in Mathematics, Springer, 2012.  Google Scholar

[35]

J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Springer Verlag, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[36]

M. MohamedA. Hirani and R. Samtaney, Comparison of discrete Hodge star operators for surfaces, Computer-Aided Design, 78 (2016), 118-125.   Google Scholar

[37]

M. MohamedA. Hirani and R. Samtaney, Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes, J. Comput. Phys., 312 (2016), 175-191.  doi: 10.1016/j.jcp.2016.02.028.  Google Scholar

[38]

M. MohamedA. Hirani and R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, Int. J. Comput. Method. Eng. Sci. Mech., 19 (2018), 194-206.  doi: 10.1080/15502287.2018.1446196.  Google Scholar

[39]

S. Morita, Geometry of Differential Forms, American Mathematical Society, 2001. doi: 10.1090/mmono/201.  Google Scholar

[40]

P. Mullen, P. Memari, F. Goes and M. Desbrun, HOT: Hodge-optimized triangulations, ACM Trans. Graph., 30 (2011). Google Scholar

[41]

I. Nitschke, S. Reuther and A. Voigt, Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation, Springer International Publishing, 2017.  Google Scholar

[42]

A. R, M. JE and R. R., Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[43]

V. Rajan, Optimality of the Delaunay triangulation in $\mathbb{R}^d$, Discrete Comput. Geom., 12 (1994), 189-202.  doi: 10.1007/BF02574375.  Google Scholar

[44]

D. Razafindralandy, A. Hamdouni and M. Chhay, A review of some geometric integrators, Adv. Model. Simul. Eng. Sci., 5 (2018), 16. Google Scholar

[45]

D. Razafindralandy, V. Salnikov, A. Hamdouni and A. Deeb, Some robust integrators for large time dynamics, Adv. Model. Simul. Eng. Sci., 6 (2019), 5. Google Scholar

[46]

V. Salnikov and A. Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, J. Appl. Math. Mech., 99 (2019), e201800218. doi: 10.1002/zamm.201800218.  Google Scholar

[47]

M. Spivak, A Comprehensive Introduction to Differential Geometry, 3rd edition, Publish or Perish, 1999.  Google Scholar

[48]

T. TarhasaariL. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques, IEEE Trans. Magnet., 35 (1999), 1494-1497.   Google Scholar

[49]

E. VanderZee, A. Hirani, D. Guoy and E. Ramos, Well-centered triangulation, SIAM J. Sci. Comput., 31. doi: 10.1137/090748214.  Google Scholar

[50] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.   Google Scholar
[51]

L. Yuan, Acute triangulations of trapezoids, Discrete Appl. Math., 158 (2010), 1121-1125.  doi: 10.1016/j.dam.2010.02.008.  Google Scholar

[52]

C. T. Zamfirescu, Survey of two-dimensional acute triangulations, Discrete Math., 313 (2013), 35-49.  doi: 10.1016/j.disc.2012.09.016.  Google Scholar

show all references

References:
[1]

P. Alotto and I. Perugia, Matrix properties of a vector potential cell method for magnetostatics, IEEE Trans. Magnet., 40 (2004), 1045-1048.   Google Scholar

[2]

D. Arnold, Finite Element Exterior Calculus, SIAM-Society for Industrial and Applied Mathematics, 2018. doi: 10.1137/1.9781611975543.ch1.  Google Scholar

[3]

D. ArnoldR. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), 1-155.  doi: 10.1017/S0962492906210018.  Google Scholar

[4]

D. ArnoldR. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bullet. Amer. Math. Soc., 47 (2010), 281-354.  doi: 10.1090/S0273-0979-10-01278-4.  Google Scholar

[5]

B. Auchmann and S. Kurz, A geometrically defined discrete Hodge operator on simplicial cells, IEEE Trans. Magnet., 42 (2006), 643-646.   Google Scholar

[6] C. Blanes and S. Fernando, A Concise Introduction to Geometric Numerical Integration, CRC Press, 2016.   Google Scholar
[7]

P. Bochev and J. Hyman, Compatible Spatial Discretizations, Springer, 2006. doi: 10.1007/0-387-38034-5_5.  Google Scholar

[8]

A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, Science, Measurement and Technology, IEE Proceedings A, 135 (1988), 493-500.   Google Scholar

[9] A. Bossavit, Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press, 1998.   Google Scholar
[10]

A. Bossavit, On the geometry of electromagnetism: (1) Affine space, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 17-28.   Google Scholar

[11]

A. Bossavit, On the geometry of electromagnetism: (2) Geometrical objects, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 114-123.   Google Scholar

[12]

A. Bossavit, On the geometry of electromagnetism: (3) Integration, Stokes, Faraday's law, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 233-240.   Google Scholar

[13]

A. Bossavit, On the geometry of electromagnetism: (4) Maxwell's house, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 318-326.   Google Scholar

[14]

A. Bossavit, Computational electromagnetism and geometry : (3) Convergence, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 401-408.   Google Scholar

[15]

A. Bossavit, Computational electromagnetism and geometry: (1) Network equations, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 150-159.   Google Scholar

[16]

A. Bossavit, Computational electromagnetism and geometry: (2) Network constitutive laws, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 204-301.   Google Scholar

[17]

A. Bossavit, Computational electromagnetism and geometry : (4): From degrees of freedom to fields, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 102-109.   Google Scholar

[18]

A. Bossavit, Computational electromagnetism and geometry : (5): The Galerkin Hodge, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 203-209.   Google Scholar

[19]

A. Bossavit, Discretization of electromagnetic problems: The "generalized finite differences" approach, in Numer. Method. Electrom., Elsevier, 2005, 105-197.  Google Scholar

[20]

C. Cassidy and G. Lord, A Square Acutely Triangulated, Baywood Publishing Co.. Inc., 1980.  Google Scholar

[21]

M. CinalliF. EdelvikR. Schuhmann and T. Weiland, Consistent material operators for tetrahedral grids based on geometrical principles, Int. J. Numer. Model., 17 (2004), 487-507.   Google Scholar

[22]

K. Crane, F. de Goes, M. Desbrun and P. Schr$\ddot{o}$der, Digital geometry processing with discrete exterior calculus, in ACM SIGGRAPH 2013 courses, SIGGRAPH'13, ACM, 2013. Google Scholar

[23]

M. Desbrun, A. Hirani, M. Leok and J. Marsden, Discrete exterior calculus, arXivmath/0508341. Google Scholar

[24]

S. ElcottY. TongE. KansoP. Schr$\ddot{o}$der and M. Desbrun, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26 (2015), 377-388.   Google Scholar

[25] M. Fecko, Differential Geometry and Lie Groups for Physicists, Cambridge University Press, 2006.  doi: 10.1017/CBO9780511755590.  Google Scholar
[26]

C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Method. Eng., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[27]

A. Gillette, Notes on Discrete Exterior Calculus, Technical report, University of Texas at Austin, 2009. Google Scholar

[28]

E. Grispun, P. Schr$\ddot{o}$der and M. Desbrun, Discrete differential geometry: An applied introduction, in ACM SIGGRAPH 2005 course notes, SIGGRAPH'05, ACM, 2005. Google Scholar

[29]

W. Hairer, G. Wanner and C. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer Series in Computational Mathematics, Springer, 2006.  Google Scholar

[30]

R. Hiptmair, Discrete Hodge operators, Numerische Mathematik, 90 (2001), 265-289.  doi: 10.1007/s002110100295.  Google Scholar

[31]

A. Hirani, Discrete Exterior Calculus, Phd thesis, California Institute of Technology, Pasadena, CA, USA, 2003.  Google Scholar

[32]

A. HiraniK. Kalyanaraman and E. VanderZee, Delaunay Hodge star, Computer-Aided Design, 45 (2013), 540-544.  doi: 10.1016/j.cad.2012.10.038.  Google Scholar

[33]

A. HiraniK. Nakshatrala and J. Chaudhry, Numerical method for Darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics, 16 (2015), 151-169.  doi: 10.1080/15502287.2014.977500.  Google Scholar

[34]

J. Lee, Introduction to Smooth Manifolds, 2nd edition, Graduate Texts in Mathematics, Springer, 2012.  Google Scholar

[35]

J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Springer Verlag, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[36]

M. MohamedA. Hirani and R. Samtaney, Comparison of discrete Hodge star operators for surfaces, Computer-Aided Design, 78 (2016), 118-125.   Google Scholar

[37]

M. MohamedA. Hirani and R. Samtaney, Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes, J. Comput. Phys., 312 (2016), 175-191.  doi: 10.1016/j.jcp.2016.02.028.  Google Scholar

[38]

M. MohamedA. Hirani and R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, Int. J. Comput. Method. Eng. Sci. Mech., 19 (2018), 194-206.  doi: 10.1080/15502287.2018.1446196.  Google Scholar

[39]

S. Morita, Geometry of Differential Forms, American Mathematical Society, 2001. doi: 10.1090/mmono/201.  Google Scholar

[40]

P. Mullen, P. Memari, F. Goes and M. Desbrun, HOT: Hodge-optimized triangulations, ACM Trans. Graph., 30 (2011). Google Scholar

[41]

I. Nitschke, S. Reuther and A. Voigt, Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation, Springer International Publishing, 2017.  Google Scholar

[42]

A. R, M. JE and R. R., Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[43]

V. Rajan, Optimality of the Delaunay triangulation in $\mathbb{R}^d$, Discrete Comput. Geom., 12 (1994), 189-202.  doi: 10.1007/BF02574375.  Google Scholar

[44]

D. Razafindralandy, A. Hamdouni and M. Chhay, A review of some geometric integrators, Adv. Model. Simul. Eng. Sci., 5 (2018), 16. Google Scholar

[45]

D. Razafindralandy, V. Salnikov, A. Hamdouni and A. Deeb, Some robust integrators for large time dynamics, Adv. Model. Simul. Eng. Sci., 6 (2019), 5. Google Scholar

[46]

V. Salnikov and A. Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, J. Appl. Math. Mech., 99 (2019), e201800218. doi: 10.1002/zamm.201800218.  Google Scholar

[47]

M. Spivak, A Comprehensive Introduction to Differential Geometry, 3rd edition, Publish or Perish, 1999.  Google Scholar

[48]

T. TarhasaariL. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques, IEEE Trans. Magnet., 35 (1999), 1494-1497.   Google Scholar

[49]

E. VanderZee, A. Hirani, D. Guoy and E. Ramos, Well-centered triangulation, SIAM J. Sci. Comput., 31. doi: 10.1137/090748214.  Google Scholar

[50] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.   Google Scholar
[51]

L. Yuan, Acute triangulations of trapezoids, Discrete Appl. Math., 158 (2010), 1121-1125.  doi: 10.1016/j.dam.2010.02.008.  Google Scholar

[52]

C. T. Zamfirescu, Survey of two-dimensional acute triangulations, Discrete Math., 313 (2013), 35-49.  doi: 10.1016/j.disc.2012.09.016.  Google Scholar

Figure 1.  Example of 2D simplicial complex embedded in $ \mathbb{R} ^3 $
Figure 2.  Example of a consistently oriented mesh. Arrows represent the orientation of edges and faces
Figure 3.  Primal simplices (in blue) of a triangle $ f $ (left), an edge $ e $ (middle) and a vertex $ v $ (right) and their duals $ f^* $, $ e^* $, $ v^* $ (in red) in a 2D mesh
Figure 4.  Sample 2D mesh (in blue) on a square and its circumcentric dual (in red)
Figure 5.  Primal simplices and their circumcentric dual cells in a 2D mesh composed of a single triangle. $ c_i $ is the circumcenter of the primal edge $ e_i $, for $ i = 1, 2, 3 $, and $ c_t $ is the circumcenter of the triangle. $ e_i^* $ is perpendicular to $ e_i $
Figure 6.  Primal simplices and their arbitrary-centered dual cells in a 2D mesh composed of a single triangle. The $ c_i $'s and $ c_t $ are respectively arbitrary interior points of the edges $ e_i $'s and of the triangle. The triangle is oriented counterclockwise. Arrows indicate the orientations of the primal edges and the induced orientations of dual edges. The angles $ \theta _i $ defined in (3.1) are drawn in red
Figure 7.  Right triangle with side lengths $ m $ and $ n $. Left: with a circumcentric dual mesh ($ \text{e}_3^* $ has a zero length). Right: with a barycentric dual mesh
Figure 8.  Typical acute and right triangulations of the unit square
Figure 9.  Poisson equation with with $ u_{exact} = x^2+y^2 $: error evolution
Figure 10.  Poisson equation with $ u_{exact} = \sin (πx)\, \sinh (πx) $: error evolution
Figure 11.  Poiseuille flow: error on $ \psi $
Figure 12.  Poiseuille flow: error on $ u $
Figure 13.  Taylor-Green vortex: error on $ \psi $
Figure 14.  Taylor-Green vortex: error on $ u $
Figure 15.  Traveling wave. Profile of the relative error on the stream function along $ y = 0 $ and at $ t = T $
Figure 16.  Traveling wave. Profile of the relative error on the horizontal velocity along $ y = 0 $ and at $ t = T $
Figure 17.  Traveling wave. Profile of the relative error on the temperature along $ y = 0 $ and at $ t = T $
Figure 18.  Unstructured meshes with respectively 36.36%, 40.69%, 39.41%, 43.46% and 44.20% of non-Delaunay triangles
Figure 19.  Unstructured meshes. Convergence of the stream function and the temperature
Figure 20.  Relative error on mesh (e) of Table 18
Figure 21.  Set of meshes with 15% of non-Delaunay triangles
Figure 22.  Set of meshes with 25% of non-Delaunay triangles
Figure 23.  Set of meshes with 50% of non-Delaunay triangles
Figure 21), the second set (Figure 22) and the third set (Figure 23) of meshes">Figure 24.  Convergence of the stream function and of the temperature. From top to bottom: with the first set (Figure 21), the second set (Figure 22) and the third set (Figure 23) of meshes
Figure 25.  Evolution of the convergence rate with the ratio of non-Delaunay triangles
Figure 26.  Discretized ellipsoid. Non-well centered triangles are darkened
Figure 27.  Streamlines for $ t $ from 0 to 11
Table 1.  $ \ell^2 $-norm of the error of the discrete Hodge operators on the unit right triangle and on a right-triangularized square with 20 points in each direction
$ {\text{Single triangle}}$$ {\text{Right mesh}} $
$\text{Differential form}$$ \text{Barycentric} $$\text{Incentric}$$\text{Barycentric}$$\text{Incentric} $
$(x-y)(\text{d}x-\text{d}y)$$0.2946$$0.3232$$1.5243·10^{-2}$$1.5715·10^{-2} $
$(x+y)(\text{d}x+\text{d}y)$$0.0589$$0.0303$$6.6882·10^{-4}$$3.4424·10^{-4} $
$ {\text{Single triangle}}$$ {\text{Right mesh}} $
$\text{Differential form}$$ \text{Barycentric} $$\text{Incentric}$$\text{Barycentric}$$\text{Incentric} $
$(x-y)(\text{d}x-\text{d}y)$$0.2946$$0.3232$$1.5243·10^{-2}$$1.5715·10^{-2} $
$(x+y)(\text{d}x+\text{d}y)$$0.0589$$0.0303$$6.6882·10^{-4}$$3.4424·10^{-4} $
Table 2.  Poisson equation with with $ u_{exact} = x^2+y^2 $: convergence rate
Acute mesh Right mesh
Circumcentric dual 1.995
Barycentric dual 1.985 1.923
Incentric dual 1.992 1.921
Acute mesh Right mesh
Circumcentric dual 1.995
Barycentric dual 1.985 1.923
Incentric dual 1.992 1.921
Table 3.  Poisson equation with $ u_{exact} = \sin (πx)\, \sinh (πx) $: convergence rate
Acute mesh Right mesh
Circumcentric dual 1.975
Barycentric dual 1.979 1.809
Incentric dual 1.982 1.840
Acute mesh Right mesh
Circumcentric dual 1.975
Barycentric dual 1.979 1.809
Incentric dual 1.982 1.840
Table 4.  Poiseuille flow: convergence rates
Acute mesh Right mesh
Stream function Velocity Stream function Velocity
Circumcentric 2.006 1.421
Barycentric 2.184 1.106 1.989 1.553
Incentric 2.185 1.096 1.989 1.539
Acute mesh Right mesh
Stream function Velocity Stream function Velocity
Circumcentric 2.006 1.421
Barycentric 2.184 1.106 1.989 1.553
Incentric 2.185 1.096 1.989 1.539
Table 5.  Taylor-Green vortex: convergence rates
Acute mesh Right mesh
Stream function Velocity Stream function Velocity
Circumcentric 1.996 1.187
Barycentric 2.065 1.130 2.018 1.735
Incentric 2.088 1.118 2.067 1.736
Acute mesh Right mesh
Stream function Velocity Stream function Velocity
Circumcentric 1.996 1.187
Barycentric 2.065 1.130 2.018 1.735
Incentric 2.088 1.118 2.067 1.736
Table 6.  Traveling wave. Mean relative error
Dual mesh Stream function Velocity Temperature
Barycentric $ 2.651\cdot 10^{-5} $ $ 7.270\cdot10^{-5} $ $ 5.529\cdot10^{-3} $
Incentric $ 8.875\cdot 10^{-5} $ $ 2.132\cdot10^{-4} $ $ 5.589\cdot10^{-3} $
Dual mesh Stream function Velocity Temperature
Barycentric $ 2.651\cdot 10^{-5} $ $ 7.270\cdot10^{-5} $ $ 5.529\cdot10^{-3} $
Incentric $ 8.875\cdot 10^{-5} $ $ 2.132\cdot10^{-4} $ $ 5.589\cdot10^{-3} $
Table 7.  Unstructured meshes. Convergence rates of the stream function and the temperature
Stream function Temperature
Convergence rate 1.3690 1.1430
Stream function Temperature
Convergence rate 1.3690 1.1430
Table 8.  Relative errors on mesh (e) of Table 18
Stream function Temperature Velocity
Relative error $ 3.581\cdot 10^{-3} $ $ 3.682\cdot10^{-3} $ $ 2.316\cdot10^{-2} $
Stream function Temperature Velocity
Relative error $ 3.581\cdot 10^{-3} $ $ 3.682\cdot10^{-3} $ $ 2.316\cdot10^{-2} $
Table 9.  Convergence rate
Stream function Temperature
15% non-Delaunay meshes 1.9005 1.5159
25% non-Delaunay meshes 1.6729 1.2154
50% non-Delaunay meshes 1.6591 0.8660
Stream function Temperature
15% non-Delaunay meshes 1.9005 1.5159
25% non-Delaunay meshes 1.6729 1.2154
50% non-Delaunay meshes 1.6591 0.8660
[1]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1229-1242. doi: 10.3934/dcdss.2020071

[2]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[3]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure & Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

[4]

Poonam Savsani, Mohamed A. Tawhid. Discrete heat transfer search for solving travelling salesman problem. Mathematical Foundations of Computing, 2018, 1 (3) : 265-280. doi: 10.3934/mfc.2018012

[5]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[6]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[7]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[8]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[9]

Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[12]

Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447-485. doi: 10.3934/jgm.2019023

[13]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[14]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[15]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[16]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[17]

Thomas Hagen, Andreas Johann, Hans-Peter Kruse, Florian Rupp, Sebastian Walcher. Dynamical systems and geometric mechanics: A special issue in Honor of Jürgen Scheurle. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : i-iii. doi: 10.3934/dcdss.20204i

[18]

Sylvain Ervedoza, Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Mathematical Control & Related Fields, 2011, 1 (2) : 177-187. doi: 10.3934/mcrf.2011.1.177

[19]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[20]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (17)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]