• Previous Article
    Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production
  • CPAA Home
  • This Issue
  • Next Article
    A new Hodge operator in discrete exterior calculus. Application to fluid mechanics
June  2021, 20(6): 2187-2209. doi: 10.3934/cpaa.2021063

Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity

1. 

Texas A & M University, College Station, TX, Institute for Information Transmission Problems, Moscow, Russia

2. 

Vienna University, Vienna, Austria, Institute for Information Transmission Problems, Moscow, Russia

* Corresponding author

Received  August 2020 Revised  February 2021 Published  June 2021 Early access  April 2021

Fund Project: The second author is supported by the Austrian Science Fund (FWF), Grant P 34177-N

We obtain explicit characterization of orbital and spectral stability of solitary wave solutions to the $ {\bf{U}}(1) $-invariant 1D Klein–Gordon equation coupled to an anharmonic oscillator. We also give the complete analysis of the spectrum of the linearization at a solitary wave.

Citation: Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2187-2209. doi: 10.3934/cpaa.2021063
References:
[1]

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[2]

N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar

[3]

V. BuslaevA. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[4]

E. CsoboF. GenoudM. Ohta and and J. Royer, Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.  doi: 10.1016/j.jde.2019.08.015.  Google Scholar

[5]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[6]

M. GrillakisJ. Shata and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.   Google Scholar

[8]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[9]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[10]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[11]

A. Kolokolov, Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.  doi: 10.1016/0021-8928(74)90131-2.  Google Scholar

[12]

E. Kopylova, On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.  doi: 10.1016/j.na.2009.01.188.  Google Scholar

[13]

E. Kopylova, On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.  doi: 10.1080/00036810903277176.  Google Scholar

[14]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.  doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[15]

M. Ohta and G. Todorova, Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.  doi: 10.1137/050643015.  Google Scholar

show all references

References:
[1]

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[2]

N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar

[3]

V. BuslaevA. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[4]

E. CsoboF. GenoudM. Ohta and and J. Royer, Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.  doi: 10.1016/j.jde.2019.08.015.  Google Scholar

[5]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[6]

M. GrillakisJ. Shata and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.   Google Scholar

[8]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[9]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[10]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[11]

A. Kolokolov, Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.  doi: 10.1016/0021-8928(74)90131-2.  Google Scholar

[12]

E. Kopylova, On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.  doi: 10.1016/j.na.2009.01.188.  Google Scholar

[13]

E. Kopylova, On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.  doi: 10.1080/00036810903277176.  Google Scholar

[14]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.  doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[15]

M. Ohta and G. Todorova, Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.  doi: 10.1137/050643015.  Google Scholar

Figure 1.  The relation between $ \lambda\in\sigma(H_\kappa(\omega)) $ and $ \Lambda\in\sigma(L_\kappa(\omega)) $ for $ \omega\in(-m,m)\setminus\{0\} $, $ \kappa>0 $
Figure 2.  Location of simple nonzero eigenvalues $ \pm\lambda $
[1]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[2]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[3]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[4]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[5]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[6]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[7]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[8]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[9]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[10]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[11]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[12]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[13]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[14]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[15]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[16]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[17]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[18]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[19]

Elena Kopylova. On dispersion decay for 3D Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5765-5780. doi: 10.3934/dcds.2018251

[20]

Chi-Kun Lin, Kung-Chien Wu. On the fluid dynamical approximation to the nonlinear Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2233-2251. doi: 10.3934/dcds.2012.32.2233

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (121)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]