[1]
|
R. A. Adams, Sobolev Spaces, Acadamic Press, New York, 1975.
|
[2]
|
S. M. Allen and J. W. Cahn, A mocroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095.
|
[3]
|
R. Araya, G. R. Barrenechea and F. Valentin, Stabilized finite element methods based on multiscale enrichment for the Stokes problem, SIAM J. Numer. Anal., 44 (2006), 322-348.
doi: 10.1137/050623176.
|
[4]
|
Uri M. Ascher, J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta method for time dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151-167.
doi: 10.1016/S0168-9274(97)00056-1.
|
[5]
|
A. L. Bertozzi, S. Esedoglu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for image inpainting, Multi. Model. Simul., 6 (2007), 913-936.
doi: 10.1137/060660631.
|
[6]
|
A. L. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Proc., 16 (2007), 285-291.
doi: 10.1109/TIP.2006.887728.
|
[7]
|
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
|
[8]
|
L. Q. Chen and J. Shen, Application of semi-implict Fourier-spectral method to phase-filed equations, Comput. Phys. Comm., 108 (1998), 147-158.
|
[9]
|
L. Q. Chen, Phase-filed models for microstructure evolution, Ann. Rev. Material Research, 32 (2002), 113-140.
|
[10]
|
Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model pf phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322.
doi: 10.1137/0728069.
|
[11]
|
A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4355-5.
|
[12]
|
X. Feng, H. Song, T. Tang and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse. Probl. Imag., 7 (2013), 679-695.
doi: 10.3934/ipi.2013.7.679.
|
[13]
|
X. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, E. Asian J. Appl. Math., 3 (2013), 59-80.
doi: 10.4208/eajam.200113.220213a.
|
[14]
|
F. Guillén-González and G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68 (2014), 821-846.
doi: 10.1016/j.camwa.2014.07.014.
|
[15]
|
F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model, J. Comput. Phys., 234 (2013), 140-171.
doi: 10.1016/j.jcp.2012.09.020.
|
[16]
|
R. He, Z. Chen and X. Feng, Error estimate of fully discrete finite element solutions for the 2D Cahn-Hilliard equation with infinite time horizon, Numer. Meth. Partial Differ. Equ., 33 (2016), 742-762.
doi: 10.1002/num.22121.
|
[17]
|
Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77 (2008), 2097-2124.
doi: 10.1090/S0025-5718-08-02127-3.
|
[18]
|
Y. He, Y. Liu and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616-628.
doi: 10.1016/j.apnum.2006.07.026.
|
[19]
|
C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by Fourier-spectral method, Physica D, 179 (2003), 211-228.
doi: 10.1016/S0167-2789(03)00030-7.
|
[20]
|
F. Liu and J. Shen, Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations, Math. Method Appl. Sci., 38 (2015), 4564-4575.
doi: 10.1002/mma.2869.
|
[21]
|
Q. Liu, Y. Hou, Z. Wang and J. Zhao, Two-level methods for the Cahn-Hilliard equation, Math. Comput. Simulat., 126 (2016), 89-103.
doi: 10.1016/j.matcom.2016.03.004.
|
[22]
|
X. Liu and Z. Chen, A virtual element method for the Cahn-Hilliard problem in mixed form, Appl. Math. Lett., 87 (2019), 115-124.
doi: 10.1016/j.aml.2018.07.031.
|
[23]
|
J. Lowengrub and L. Truskinovsky, Quasi-incrompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A., 454 (1998), 2617-2654.
doi: 10.1098/rspa.1998.0273.
|
[24]
|
B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702.
doi: 10.3934/cpaa.2010.9.685.
|
[25]
|
J. Shen, Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 22 (2011), 147-195.
doi: 10.1142/9789814360906_0003.
|
[26]
|
J. Shen and X. F. Yang, Numerical approxomation of Allen-Cahn and Cahn-Hilliard equations, Disc. Conti. Dyn. Sys., 28 (2010), 1669-1691.
doi: 10.3934/dcds.2010.28.1669.
|
[27]
|
J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416.
doi: 10.1016/j.jcp.2017.10.021.
|
[28]
|
H. Song, Energy stable and large time-stepping methods for the Cahn-Hilliard equation, Int. J. Comput. Math., 92 (2014), 2091-2108.
doi: 10.1080/00207160.2014.964694.
|
[29]
|
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3$^rd$ edition, North-Holland, Amsterdam, 1984.
|
[30]
|
Y. Yan, W. Chen, C. Wang and S.M. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572-602.
doi: 10.4208/cicp.oa-2016-0197.
|
[31]
|
X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Disc. Conti. Dyn. Sys.-B, 11 (2009), 1057-1070.
doi: 10.3934/dcdsb.2009.11.1057.
|
[32]
|
X. Yang and J. Zhao, Efficient linear schemes for the nonlocal Cahn-Hilliard equation of phase field models, Comp. Phys. Commun., 235 (2019), 234-245.
doi: 10.1016/j.cpc.2018.08.012.
|
[33]
|
J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput., 31 (2009), 3042-3063.
doi: 10.1137/080738398.
|
[34]
|
S. Zhang and M. Wang, A nonconforming finite element method for the Cahn-Hilliard equation, J. Comput. Phys., 229 (2010), 7361-7372.
doi: 10.1016/j.jcp.2010.06.020.
|