\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations

  • * Corresponding author

    * Corresponding author 

The first author is supported by the National Key R & D Program of China(Grant No.2018YFB1501001), the NSF of China (Grant Nos.11771348 and 11971379)

Abstract Full Text(HTML) Figure(8) / Table(4) Related Papers Cited by
  • In this paper, we investigate fully discrete schemes for the Allen-Cahn and Cahn-Hilliard equations respectively, which consist of the stabilized finite element method based on multiscale enrichment for the spatial discretization and the semi-implicit scheme for the temporal discretization. With reasonable stability conditions, it is shown that the proposed schemes are energy stable. Furthermore, by defining a new projection operator, we deduce the optimal $ L^2 $ error estimates. Some numerical experiments are presented to confirm the theoretical predictions and the efficiency of the proposed schemes.

    Mathematics Subject Classification: Primary: 35Q30, 65N30, 76D07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The dynamic of the scheme for Allen-Cahn equation at the $t = 0.0001$(left), $t = 0.001$(middle)and $t = 0.01$(right).

    Figure 2.  The dynamic of the scheme for Allen-Cahn equation at the $t = 0.1$ (left), $t = 1.0$(middle)and $t = 2.0$(right).

    Figure 3.  The dynamic of the scheme for Allen-Cahn equation at the $t = 3.0$ (left), $t = 4.0$(middle)and $t = 5.0$(right).

    Figure 4.  The dynamic of the scheme for Allen-Cahn equation at the $t = 5.5$ (left) and $t = 6.0$(right).

    Figure 5.  The dynamic of the scheme for Cahn-Hilliard equation at the $t = 0.0001$ (left) and $t = 0.001$(right).

    Figure 6.  The dynamic of the scheme for Cahn-Hilliard equation at the $t = 0.01$ (left) and $t = 0.1$(right).

    Figure 7.  The dynamic of the scheme for Cahn-Hilliard equation at the $t = 0.5$ (left) and $t = 1.0$(right).

    Figure 8.  The dynamic of the scheme for Cahn-Hilliard equation at the $t = 1.2$ (left) and $t = 1.5$(right).

    Table 1.  Convergence performance of the time discretization for the 2D Allen-Cahn equation

    Time step $ dt = 10^{-2} $ $ dt/2 $ $ dt/3 $ $ dt/4 $ $ dt/5 $ $ dt/6 $ $ dt/7 $ $ dt/8 $ $ dt/9 $
    $\frac{{{{\left\| {u - {u_h}} \right\|}_0}}}{{{{\left\| u \right\|}_0}}}$ 0.257853 0.165833 0.121715 0.095751 0.078637 0.066504 0.057452 0.050440 0.044848
    $ u_{L^{2}rate} $ \ 0.636817 0.762828 0.834011 0.882443 0.919165 0.949093 0.974767 0.997637
     | Show Table
    DownLoad: CSV

    Table 2.  Convergence performance of the spatial discretization for the 2D Allen-Cahn equation

    Mesh $ h = 2pi/8 $ $ h = 2pi/16 $ $ h = 2pi/32 $ $ h = 2pi/64 $ $ h = 2pi/128 $
    $\frac{|u-u_{h}|_{0}}{|u|_{0}} $ 0.122619 0.031633 0.007850 0.001841 0.000349
    $ u_{L^{2}rate} $ \ 1.954660 2.010630 2.092350 2.401100
     | Show Table
    DownLoad: CSV

    Table 3.  Convergence performance of the time discretization for the 2D Cahn-Hilliard equation

    Time step $ dt = 10^{-4} $ $ dt/2 $ $ dt/3 $ $ dt/4 $ $ dt/5 $ $ dt/6 $ $ dt/7 $ $ dt/8 $ $ dt/9 $
    $ \frac{\|u-u_{h}\|_{0}}{\|u\|_{0}} $ 1.940e-04 9.65e-05 6.38e-05 4.74e-05 3.76e-05 3.11e-05 2.65e-05 2.30e-05 2.04e-05
    $ u_{L^{2}rate} $ \ 1.00706 1.02108 1.03078 1.03783 1.04254 1.04493 1.04497 1.04261
    $ \frac{\|w-w_{h}\|_{0}}{\|w\|_{0}} $ 0.019526 0.009760 0.006461 0.004804 0.003807 0.003141 0.002665 0.002308 0.002030
    $ w_{L^{2}rate} $ \ 1.00045 1.01715 1.03026 1.04246 1.05439 1.06629 1.07827 1.09041
     | Show Table
    DownLoad: CSV

    Table 4.  Convergence performance of the spatial discretization for the 2D Cahn-Hilliard equation

    Mesh $ h = 2\pi/8 $ $ h = 2\pi/16 $ $ h = 2\pi/32 $ $ h = 2\pi/64 $ $ h = 2\pi/128 $
    $ \frac{\|u-u_{h}\|_{0}}{\|u\|_{0}} $ {0.116925} 0.030137 0.007479 0.001755 0.000337
    $ u_{L^{2}rate} $ \ 1.95596 2.01063 2.09102 2.38675
    $ \frac{\|w-w_{h}\|_{0}}{\|w\|_{0}} $ {0.120028} 0.030952 0.007681 0.001802 0.000343
    $ w_{L^{2}rate} $ \ 1.95523 2.01063 2.09177 2.39460
     | Show Table
    DownLoad: CSV
  • [1] R. A. AdamsSobolev Spaces, Acadamic Press, New York, 1975. 
    [2] S. M. Allen and J. W. Cahn, A mocroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095. 
    [3] R. ArayaG. R. Barrenechea and F. Valentin, Stabilized finite element methods based on multiscale enrichment for the Stokes problem, SIAM J. Numer. Anal., 44 (2006), 322-348.  doi: 10.1137/050623176.
    [4] Uri M. AscherJ. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta method for time dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151-167.  doi: 10.1016/S0168-9274(97)00056-1.
    [5] A. L. BertozziS. Esedoglu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for image inpainting, Multi. Model. Simul., 6 (2007), 913-936.  doi: 10.1137/060660631.
    [6] A. L. BertozziS. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Proc., 16 (2007), 285-291.  doi: 10.1109/TIP.2006.887728.
    [7] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. 
    [8] L. Q. Chen and J. Shen, Application of semi-implict Fourier-spectral method to phase-filed equations, Comput. Phys. Comm., 108 (1998), 147-158. 
    [9] L. Q. Chen, Phase-filed models for microstructure evolution, Ann. Rev. Material Research, 32 (2002), 113-140. 
    [10] Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model pf phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322.  doi: 10.1137/0728069.
    [11] A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.
    [12] X. FengH. SongT. Tang and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse. Probl. Imag., 7 (2013), 679-695.  doi: 10.3934/ipi.2013.7.679.
    [13] X. FengT. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, E. Asian J. Appl. Math., 3 (2013), 59-80.  doi: 10.4208/eajam.200113.220213a.
    [14] F. Guillén-González and G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68 (2014), 821-846.  doi: 10.1016/j.camwa.2014.07.014.
    [15] F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model, J. Comput. Phys., 234 (2013), 140-171.  doi: 10.1016/j.jcp.2012.09.020.
    [16] R. HeZ. Chen and X. Feng, Error estimate of fully discrete finite element solutions for the 2D Cahn-Hilliard equation with infinite time horizon, Numer. Meth. Partial Differ. Equ., 33 (2016), 742-762.  doi: 10.1002/num.22121.
    [17] Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77 (2008), 2097-2124.  doi: 10.1090/S0025-5718-08-02127-3.
    [18] Y. HeY. Liu and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616-628.  doi: 10.1016/j.apnum.2006.07.026.
    [19] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by Fourier-spectral method, Physica D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.
    [20] F. Liu and J. Shen, Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations, Math. Method Appl. Sci., 38 (2015), 4564-4575.  doi: 10.1002/mma.2869.
    [21] Q. LiuY. HouZ. Wang and J. Zhao, Two-level methods for the Cahn-Hilliard equation, Math. Comput. Simulat., 126 (2016), 89-103.  doi: 10.1016/j.matcom.2016.03.004.
    [22] X. Liu and Z. Chen, A virtual element method for the Cahn-Hilliard problem in mixed form, Appl. Math. Lett., 87 (2019), 115-124.  doi: 10.1016/j.aml.2018.07.031.
    [23] J. Lowengrub and L. Truskinovsky, Quasi-incrompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A., 454 (1998), 2617-2654.  doi: 10.1098/rspa.1998.0273.
    [24] B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702.  doi: 10.3934/cpaa.2010.9.685.
    [25] J. Shen, Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 22 (2011), 147-195.  doi: 10.1142/9789814360906_0003.
    [26] J. Shen and X. F. Yang, Numerical approxomation of Allen-Cahn and Cahn-Hilliard equations, Disc. Conti. Dyn. Sys., 28 (2010), 1669-1691.  doi: 10.3934/dcds.2010.28.1669.
    [27] J. ShenJ. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416.  doi: 10.1016/j.jcp.2017.10.021.
    [28] H. Song, Energy stable and large time-stepping methods for the Cahn-Hilliard equation, Int. J. Comput. Math., 92 (2014), 2091-2108.  doi: 10.1080/00207160.2014.964694.
    [29] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3$^rd$ edition, North-Holland, Amsterdam, 1984.
    [30] Y. YanW. ChenC. Wang and S.M. Wise, A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23 (2018), 572-602.  doi: 10.4208/cicp.oa-2016-0197.
    [31] X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Disc. Conti. Dyn. Sys.-B, 11 (2009), 1057-1070.  doi: 10.3934/dcdsb.2009.11.1057.
    [32] X. Yang and J. Zhao, Efficient linear schemes for the nonlocal Cahn-Hilliard equation of phase field models, Comp. Phys. Commun., 235 (2019), 234-245.  doi: 10.1016/j.cpc.2018.08.012.
    [33] J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput., 31 (2009), 3042-3063.  doi: 10.1137/080738398.
    [34] S. Zhang and M. Wang, A nonconforming finite element method for the Cahn-Hilliard equation, J. Comput. Phys., 229 (2010), 7361-7372.  doi: 10.1016/j.jcp.2010.06.020.
  • 加载中

Figures(8)

Tables(4)

SHARE

Article Metrics

HTML views(887) PDF downloads(554) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return