June  2021, 20(6): 2313-2322. doi: 10.3934/cpaa.2021078

Uniqueness and sign properties of minimizers in a quasilinear indefinite problem

1. 

FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina

2. 

CIEM-FaMAF, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina

3. 

Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan

* Corresponding author

Received  January 2021 Revised  March 2021 Published  June 2021 Early access  May 2021

Fund Project: The first author is partially supported Secyt-UNC 33620180100016CB, the third author is supported by JSPS KAKENHI Grant Number JP18K03353

Let
$ 1<q<p $
and
$ a\in C(\overline{\Omega}) $
be sign-changing, where
$ \Omega $
is a bounded and smooth domain of
$ \mathbb{R}^{N} $
. We show that the functional
$ I_{q}(u): = \int_{\Omega}\left( \frac{1}{p}|\nabla u|^{p}-\frac{1}{q}a(x)|u|^{q}\right) , $
has exactly one nonnegative minimizer
$ U_{q} $
(in
$ W_{0}^{1,p}(\Omega) $
or
$ W^{1,p}(\Omega) $
). In addition, we prove that
$ U_{q} $
is the only possible positive solution of the associated Euler-Lagrange equation, which shows that this equation has at most one positive solution. Furthermore, we show that if
$ q $
is close enough to
$ p $
then
$ U_{q} $
is positive, which also guarantees that minimizers of
$ I_{q} $
do not change sign. Several of these results are new even for
$ p = 2 $
.
Citation: Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. Uniqueness and sign properties of minimizers in a quasilinear indefinite problem. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2313-2322. doi: 10.3934/cpaa.2021078
References:
[1]

W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[2]

C. BandleM. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.  doi: 10.2307/2000679.  Google Scholar

[3]

C. BandleM. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.  doi: 10.1007/BF01159655.  Google Scholar

[4]

M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the$p$-Laplace operator, Manuscripta Math., 109 (2002), 229-231.  doi: 10.1007/s00229-002-0305-9.  Google Scholar

[5]

D. BonheureJ. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differ. Equ., 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[6]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[7]

L. Brasco and G. Franzina, An overview on constrained critical points of Dirichlet integrals, Rendiconti Sem. Mat. Univ. Pol. Torino, 78 (2020), 7-50.   Google Scholar

[8]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[9]

M. Delgado and A. Suárez, On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.  doi: 10.1016/j.aml.2004.09.020.  Google Scholar

[10]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol.I. Elliptic equations, Pitman, London, 1985.  Google Scholar

[11]

J. I. Díaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.   Google Scholar

[12]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[13]

P. Drábek and J. Hernández, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal., 44 (2001), 189-204.  doi: 10.1016/S0362-546X(99)00258-8.  Google Scholar

[14]

T. Godoy and U. Kaufmann, Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.  doi: 10.1515/ans-2014-0207.  Google Scholar

[15]

U. Kaufmann and I. Medri, Strictly positive solutions for one-dimensional nonlinear problems involving the p-Laplacian, Bull. Aust. Math. Soc., 89 (2014), 243-251.  doi: 10.1017/S0004972713000725.  Google Scholar

[16]

U. KaufmannH. Ramos Quoirin and K. Umezu, Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differ. Equ., 263 (2017), 4481-4502.  doi: 10.1016/j.jde.2017.05.021.  Google Scholar

[17]

U. KaufmannH. Ramos Quoirin and K. Umezu, A curve of positive solutions for an indefinite sublinear Dirichlet problem, Discrete Contin. Dyn. Syst., 40 (2020), 617-645.  doi: 10.3934/dcds.2020063.  Google Scholar

[18]

B. KawohlM. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differ. Equ., 12 (2007), 407-434.   Google Scholar

[19]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[20]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

show all references

References:
[1]

W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[2]

C. BandleM. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.  doi: 10.2307/2000679.  Google Scholar

[3]

C. BandleM. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199 (1988), 257-278.  doi: 10.1007/BF01159655.  Google Scholar

[4]

M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the$p$-Laplace operator, Manuscripta Math., 109 (2002), 229-231.  doi: 10.1007/s00229-002-0305-9.  Google Scholar

[5]

D. BonheureJ. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differ. Equ., 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar

[6]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[7]

L. Brasco and G. Franzina, An overview on constrained critical points of Dirichlet integrals, Rendiconti Sem. Mat. Univ. Pol. Torino, 78 (2020), 7-50.   Google Scholar

[8]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[9]

M. Delgado and A. Suárez, On the uniqueness of positive solution of an elliptic equation, Appl. Math. Lett., 18 (2005), 1089-1093.  doi: 10.1016/j.aml.2004.09.020.  Google Scholar

[10]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol.I. Elliptic equations, Pitman, London, 1985.  Google Scholar

[11]

J. I. Díaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.   Google Scholar

[12]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[13]

P. Drábek and J. Hernández, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal., 44 (2001), 189-204.  doi: 10.1016/S0362-546X(99)00258-8.  Google Scholar

[14]

T. Godoy and U. Kaufmann, Existence of strictly positive solutions for sublinear elliptic problems in bounded domains, Adv. Nonlinear Stud., 14 (2014), 353-359.  doi: 10.1515/ans-2014-0207.  Google Scholar

[15]

U. Kaufmann and I. Medri, Strictly positive solutions for one-dimensional nonlinear problems involving the p-Laplacian, Bull. Aust. Math. Soc., 89 (2014), 243-251.  doi: 10.1017/S0004972713000725.  Google Scholar

[16]

U. KaufmannH. Ramos Quoirin and K. Umezu, Positivity results for indefinite sublinear elliptic problems via a continuity argument, J. Differ. Equ., 263 (2017), 4481-4502.  doi: 10.1016/j.jde.2017.05.021.  Google Scholar

[17]

U. KaufmannH. Ramos Quoirin and K. Umezu, A curve of positive solutions for an indefinite sublinear Dirichlet problem, Discrete Contin. Dyn. Syst., 40 (2020), 617-645.  doi: 10.3934/dcds.2020063.  Google Scholar

[18]

B. KawohlM. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differ. Equ., 12 (2007), 407-434.   Google Scholar

[19]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[20]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[1]

Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. Uniqueness and sign properties of minimizers in a quasilinear indefinite problem. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/10.3934/cpaa.2021078

[2]

Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063

[3]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[4]

Marcos L. M. Carvalho, Edcarlos D. Silva, Claudiney Goulart, Carlos A. Santos. Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4401-4432. doi: 10.3934/cpaa.2020201

[5]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119

[7]

Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027

[8]

Wenxiong Chen, Congming Li, Jiuyi Zhu. Fractional equations with indefinite nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1257-1268. doi: 10.3934/dcds.2019054

[9]

Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333

[10]

Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411

[11]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[12]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[13]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[14]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[15]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[16]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[17]

Mingshang Hu, Xiaojuan Li, Xinpeng Li. Convergence rate of Peng’s law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 261-266. doi: 10.3934/puqr.2021013

[18]

Yongsheng Song. Stein’s method for the law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 199-212. doi: 10.3934/puqr.2021010

[19]

Fanfan Chen, Dingbian Qian, Xiying Sun, Yinyin Wu. Subharmonic solutions of bounded coupled Hamiltonian systems with sublinear growth. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021180

[20]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (63)
  • HTML views (101)
  • Cited by (0)

[Back to Top]