July & August  2021, 20(7&8): 2421-2440. doi: 10.3934/cpaa.2021079

Three-dimensional supersonic flows of Euler-Poisson system for potential flow

1. 

Department of Mathematical Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea

2. 

Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-Gu, Seoul 02455, Republic of Korea

3. 

Center for Mathematical Analysis and Computation (CMAC), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

* Corresponding author

Received  February 2021 Revised  March 2021 Published  July & August 2021 Early access  May 2021

Fund Project: The first author is supported in part by Samsung Science and Technology Foundation under Project Number SSTF-BA1502-51. The second author is supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT and MOE) (No. 2015R1A5A1009350 and No. 2020R1I1A1A01058480)

We prove the unique existence of supersonic solutions of the Euler-Poisson system for potential flow in a three-dimensional rectangular cylinder when prescribing the velocity and the strength of electric field at the entrance. Overall, the main framework is similar to [1], but there are several technical differences to be taken care of vary carefully. And, it is our main goal to treat all the technical differences occurring when one considers a three dimensional supersonic solution of the steady Euler-Poisson system.

Citation: Myoungjean Bae, Hyangdong Park. Three-dimensional supersonic flows of Euler-Poisson system for potential flow. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2421-2440. doi: 10.3934/cpaa.2021079
References:
[1]

M. BaeB. DuanJ. Xiao and C. Xie, Structural Stability of Supersonic Solutions to the Euler-Poisson System, Arch. Rational Mech. Anal., 239 (2021), 679-731.  doi: 10.1007/s00205-020-01583-7.

[2]

M. Bae, B. Duan and C. Xie, Subsonic Flow for the Multidimensional Euler-Poisson System, Arch. Rational Mech. Anal., 220 (2016), 155–191. doi: 10.1007/s00205-015-0930-6.

[3]

M. Bae, B. Duan and C. Xie, Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46 (2014), 3455–3480. doi: 10.1137/13094222X.

[4]

M. Bae, B. Duan and C. Xie, Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., 25 (2015), 2721–2747. doi: 10.1142/S0218202515500591.

[5]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.  doi: 10.1016/0893-9659(90)90130-4.

[6]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Annali di Matematica pura ed applicata, 165 (1993), 87-98.  doi: 10.1007/BF01765842.

[7]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.  doi: 10.1080/03605309208820853.

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin.

[9]

F. M. HuangR. H. Pan and H. M. Yu, Large time behavior of Euler-Poisson system for semiconductor, Sci. China Ser. A, 51 (2008), 965-972.  doi: 10.1007/s11425-008-0049-4.

[10]

T. LuoR. Natalini and Z. P. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1999), 810-830.  doi: 10.1137/S0036139996312168.

[11]

T. LuoJ. RauchC. J. Xie and Z. P. Xin, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Rational Mech. Anal., 202 (2011), 787-827.  doi: 10.1007/s00205-011-0433-z.

[12]

T. Luo and Z. P. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.  doi: 10.4310/CMS.2012.v10.n2.a1.

[13]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew. Math. Phys., 42 (1991), 389-407.  doi: 10.1007/BF00945711.

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.

[15]

Y. J. Peng and I. Violet, Example of supersonic solutions to a steady state Euler-Poisson system, Appl. Math. Lett., 19 (2006), 1335-1340.  doi: 10.1016/j.aml.2006.01.015.

[16]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 63 (2005), 251-268.  doi: 10.1090/S0033-569X-05-00942-1.

[17]

L. M. Yeh, On a steady state Euler-Poisson model for semiconductors, Commun. Partial Differ. Equ., 21 (1996), 1007-1034.  doi: 10.1080/03605309608821216.

show all references

References:
[1]

M. BaeB. DuanJ. Xiao and C. Xie, Structural Stability of Supersonic Solutions to the Euler-Poisson System, Arch. Rational Mech. Anal., 239 (2021), 679-731.  doi: 10.1007/s00205-020-01583-7.

[2]

M. Bae, B. Duan and C. Xie, Subsonic Flow for the Multidimensional Euler-Poisson System, Arch. Rational Mech. Anal., 220 (2016), 155–191. doi: 10.1007/s00205-015-0930-6.

[3]

M. Bae, B. Duan and C. Xie, Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46 (2014), 3455–3480. doi: 10.1137/13094222X.

[4]

M. Bae, B. Duan and C. Xie, Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., 25 (2015), 2721–2747. doi: 10.1142/S0218202515500591.

[5]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.  doi: 10.1016/0893-9659(90)90130-4.

[6]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Annali di Matematica pura ed applicata, 165 (1993), 87-98.  doi: 10.1007/BF01765842.

[7]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.  doi: 10.1080/03605309208820853.

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin.

[9]

F. M. HuangR. H. Pan and H. M. Yu, Large time behavior of Euler-Poisson system for semiconductor, Sci. China Ser. A, 51 (2008), 965-972.  doi: 10.1007/s11425-008-0049-4.

[10]

T. LuoR. Natalini and Z. P. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1999), 810-830.  doi: 10.1137/S0036139996312168.

[11]

T. LuoJ. RauchC. J. Xie and Z. P. Xin, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Rational Mech. Anal., 202 (2011), 787-827.  doi: 10.1007/s00205-011-0433-z.

[12]

T. Luo and Z. P. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.  doi: 10.4310/CMS.2012.v10.n2.a1.

[13]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew. Math. Phys., 42 (1991), 389-407.  doi: 10.1007/BF00945711.

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.

[15]

Y. J. Peng and I. Violet, Example of supersonic solutions to a steady state Euler-Poisson system, Appl. Math. Lett., 19 (2006), 1335-1340.  doi: 10.1016/j.aml.2006.01.015.

[16]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 63 (2005), 251-268.  doi: 10.1090/S0033-569X-05-00942-1.

[17]

L. M. Yeh, On a steady state Euler-Poisson model for semiconductors, Commun. Partial Differ. Equ., 21 (1996), 1007-1034.  doi: 10.1080/03605309608821216.

[1]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[2]

Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957

[3]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[4]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[5]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[6]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[7]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[8]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[9]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[10]

Léo Bois, Emmanuel Franck, Laurent Navoret, Vincent Vigon. A neural network closure for the Euler-Poisson system based on kinetic simulations. Kinetic and Related Models, 2022, 15 (1) : 49-89. doi: 10.3934/krm.2021044

[11]

Hao Chen, Kaitai Li, Yuchuan Chu, Zhiqiang Chen, Yiren Yang. A dimension splitting and characteristic projection method for three-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 127-147. doi: 10.3934/dcdsb.2018111

[12]

Pengmei Zhang, Jiashan Zheng. Boundedness and stabilization of a three-dimensional parabolic-elliptic Keller-Segel-Stokes system. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022047

[13]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[14]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[15]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[16]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[17]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[18]

Brigita Ferčec, Valery G. Romanovski, Yilei Tang, Ling Zhang. Integrability and bifurcation of a three-dimensional circuit differential system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021243

[19]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29 (5) : 2841-2876. doi: 10.3934/era.2021017

[20]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (133)
  • HTML views (205)
  • Cited by (0)

Other articles
by authors

[Back to Top]