
-
Previous Article
An optimal osmotic control problem for a concrete dam system
- CPAA Home
- This Issue
-
Next Article
Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
On local solvability for a class of generalized Mizohata equations
1. | Universidade Federal do Rio Grande, Instituto de Matemática, Estatística e Física, RS, Brazil |
2. | Universidade Federal de São Carlos, Departamento de Matemáica, SP, Brazil |
The image in $ C^{\infty} $ for a class of complex vector fields, containing the Mizohata operator, was characterized.
References:
[1] |
M. S. Baouendi, C. H. Chang and F. Treves,
Microlocal Hypo-Analytic and Extension of CR Functions, J. Differ. Geom., 18 (1983), 331-391.
|
[2] |
M. S. Baouendi and F. Treves, A local constancy principle for the solutions of certain overdetermined systems of first-order linear partial differential equations, in Advances in Mathematics Supplementary Studies, Academic Press, New York, (1981), 245-262. |
[3] |
S. Berhanu, P. D. Cordaro and J. Hounie, An introduction to involutive structures, New mathematical monographs, University Press, (2008). |
[4] |
P. D. Cordaro, Resolubilidade das Equações Diferenciais Parciais Lineares, Matemática Universitária, 14, (1992), 51-67. |
[5] |
P. D. Cordaro, Sistemas de Campos Vetoriais Complexos, Instituto de matemática pura e aplicada, (1986). |
[6] |
L. Garding and B. Malgrange,
Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand., 9 (1961), 5-21.
doi: 10.7146/math.scand.a-10619. |
[7] |
V. Grushin,
A differential Equation without a solution, Mathematical Notes, 10 (1971), 499-501.
|
[8] |
N. Hanges,
Almost mizohata operators, Trans. Amer. Math. Soc., 2 (1986), 663-675.
doi: 10.2307/2000030. |
[9] |
G. Hoepfner and R. Medrado,
Microlocal regularity for Mizohata type differential operators, J. Inst. Math. Jussieu, 19 (2020), 1185-1209.
doi: 10.1017/S1474748018000361. |
[10] |
L. Hörmander,
Differential equations without solutions, Math. Ann., 140 (1960), 169-173.
doi: 10.1007/BF01361142. |
[11] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, 1989.
doi: 10.1007/978-3-642-61497-2. |
[12] |
H. Lewy,
An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158.
doi: 10.2307/1970121. |
[13] |
S. Mizohata,
Une remarque sur les opérateurs différentielshypoelliptiques et partiellement hypoelliptiques, J. Math. Kyoto Univ., 1-3 (1962), 411-423.
doi: 10.1215/kjm/1250525013. |
[14] |
H. Ninomiya,
A necessary and sufficient condition of local integrability, J. Math Kyoto Univ., 39-4 (1999), 685-696.
doi: 10.1215/kjm/1250517821. |
[15] |
L. Nirenberg and F. Treves,
On local solvability of linear partial differential equations, I. Necessary conditions, Commun. Pure Appl. Math, 23 (1970), 1-38.
doi: 10.1002/cpa.3160230102. |
[16] |
L. Nirenberg and F. Treves,
On local solvability of linear partial differential equations, II. Sufficient conditions, Commun. Pure Appl. Math, 23 (1970), 459-510.
doi: 10.1002/cpa.3160230314. |
[17] |
L. Nirenberg and F. Treves,
Solvability of a order linear partial differential equation, Commun. Pure Appl. Math, 16 (1963), 331-351.
doi: 10.1002/cpa.3160160308. |
[18] |
L. Nunes, Resolubilidade Local Para Duas Classes de Campos de Vetores Suaves Complexos, Ph. D. thesis (in portuguese), UFSCar, 2016. |
[19] |
F. Treves,
Demarks about certain first order linear PDE in two variables, Comm. Partial Differential Equations, 5 (1980), 381-425.
doi: 10.1080/0360530800882143. |
[20] |
J. Sjöstrand,
Note on a paper of F. Treves concerning Mizohata type operators, Duke Math. J., 47 (1980), 601-608.
|
[21] |
M. Yamamoto,
On partially hypoelliptic operators, Osaka Math. J., 15 (1963), 233-247.
|
show all references
References:
[1] |
M. S. Baouendi, C. H. Chang and F. Treves,
Microlocal Hypo-Analytic and Extension of CR Functions, J. Differ. Geom., 18 (1983), 331-391.
|
[2] |
M. S. Baouendi and F. Treves, A local constancy principle for the solutions of certain overdetermined systems of first-order linear partial differential equations, in Advances in Mathematics Supplementary Studies, Academic Press, New York, (1981), 245-262. |
[3] |
S. Berhanu, P. D. Cordaro and J. Hounie, An introduction to involutive structures, New mathematical monographs, University Press, (2008). |
[4] |
P. D. Cordaro, Resolubilidade das Equações Diferenciais Parciais Lineares, Matemática Universitária, 14, (1992), 51-67. |
[5] |
P. D. Cordaro, Sistemas de Campos Vetoriais Complexos, Instituto de matemática pura e aplicada, (1986). |
[6] |
L. Garding and B. Malgrange,
Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand., 9 (1961), 5-21.
doi: 10.7146/math.scand.a-10619. |
[7] |
V. Grushin,
A differential Equation without a solution, Mathematical Notes, 10 (1971), 499-501.
|
[8] |
N. Hanges,
Almost mizohata operators, Trans. Amer. Math. Soc., 2 (1986), 663-675.
doi: 10.2307/2000030. |
[9] |
G. Hoepfner and R. Medrado,
Microlocal regularity for Mizohata type differential operators, J. Inst. Math. Jussieu, 19 (2020), 1185-1209.
doi: 10.1017/S1474748018000361. |
[10] |
L. Hörmander,
Differential equations without solutions, Math. Ann., 140 (1960), 169-173.
doi: 10.1007/BF01361142. |
[11] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, 1989.
doi: 10.1007/978-3-642-61497-2. |
[12] |
H. Lewy,
An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158.
doi: 10.2307/1970121. |
[13] |
S. Mizohata,
Une remarque sur les opérateurs différentielshypoelliptiques et partiellement hypoelliptiques, J. Math. Kyoto Univ., 1-3 (1962), 411-423.
doi: 10.1215/kjm/1250525013. |
[14] |
H. Ninomiya,
A necessary and sufficient condition of local integrability, J. Math Kyoto Univ., 39-4 (1999), 685-696.
doi: 10.1215/kjm/1250517821. |
[15] |
L. Nirenberg and F. Treves,
On local solvability of linear partial differential equations, I. Necessary conditions, Commun. Pure Appl. Math, 23 (1970), 1-38.
doi: 10.1002/cpa.3160230102. |
[16] |
L. Nirenberg and F. Treves,
On local solvability of linear partial differential equations, II. Sufficient conditions, Commun. Pure Appl. Math, 23 (1970), 459-510.
doi: 10.1002/cpa.3160230314. |
[17] |
L. Nirenberg and F. Treves,
Solvability of a order linear partial differential equation, Commun. Pure Appl. Math, 16 (1963), 331-351.
doi: 10.1002/cpa.3160160308. |
[18] |
L. Nunes, Resolubilidade Local Para Duas Classes de Campos de Vetores Suaves Complexos, Ph. D. thesis (in portuguese), UFSCar, 2016. |
[19] |
F. Treves,
Demarks about certain first order linear PDE in two variables, Comm. Partial Differential Equations, 5 (1980), 381-425.
doi: 10.1080/0360530800882143. |
[20] |
J. Sjöstrand,
Note on a paper of F. Treves concerning Mizohata type operators, Duke Math. J., 47 (1980), 601-608.
|
[21] |
M. Yamamoto,
On partially hypoelliptic operators, Osaka Math. J., 15 (1963), 233-247.
|

[1] |
Patrick Bonckaert, P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 377-400. doi: 10.3934/dcdsb.2008.10.377 |
[2] |
Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure and Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837 |
[3] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2709-2724. doi: 10.3934/cpaa.2021047 |
[4] |
Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667 |
[5] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
[6] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[7] |
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 |
[8] |
Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 |
[9] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[10] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[11] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[12] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[13] |
Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 |
[14] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[15] |
Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : i-i. doi: 10.3934/dcdss.2021137 |
[16] |
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 |
[17] |
Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451 |
[18] |
BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85 |
[19] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063 |
[20] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]