# American Institute of Mathematical Sciences

September  2021, 20(9): 3235-3258. doi: 10.3934/cpaa.2021104

## Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model

 School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang Province, 315211, China

Received  September 2020 Revised  May 2021 Published  September 2021 Early access  June 2021

Fund Project: The author is supported by K. C. Wong Magna Fund in Ningbo University

The phenomena of concentration and cavitation for the Riemann problem of the Baer-Nunziato (BN) two-phase flow model has been investigated in this paper. By using the characteristic analysis method, the formation of $\delta-$waves and vacuum states are obtained as the pressure for both phases vanish in the BN model. The solid contact wave is carefully dealt. The comparison with the solutions of pressureless two-phase model shows that, two shock waves tend to a $\delta-$shock solution, and two rarefaction waves tend to a two contact discontinuity solution when the solid contact discontinuity is involved. Moreover, the detailed Riemann solutions for two-phase flow model are given as the double pressure parameters vanish. This may contribute to the design of numerical schemes in the future research.

Citation: Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104
##### References:
 [1] N. Andrianov and G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., 64 (2004), 878-901.  doi: 10.1137/S0036139903424230. [2] N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 195 (2004), 434-464.  doi: 10.1016/j.jcp.2003.10.006. [3] M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flows, 12 (1986), 861-889. [4] T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs, Longman Scientific and technica, 1989. [5] G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350. [6] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039. [7] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech. Thermodyn., 4 (1992), 279-312.  doi: 10.1007/BF01129333. [8] L. H. Guo, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.  doi: 10.3934/cpaa.2010.9.431. [9] P. G. LeFloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci., 1 (2003), 763-797. [10] J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523.  doi: 10.1016/S0893-9659(00)00187-7. [11] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150 (1999), 425-467.  doi: 10.1006/jcph.1999.6187. [12] R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431 (2001), 239-271. [13] C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Diff. Equ., 249 (2010), 3024-3051.  doi: 10.1016/j.jde.2010.09.004. [14] W. Sheng, G. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal., 22 (2015), 115-128.  doi: 10.1016/j.nonrwa.2014.08.007. [15] W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, in: Mem. Amer. Math. Soc., AMS, Providence, 1999. doi: 10.1090/memo/0654. [16] W. Sheng and Q. Zhang, Interaction of the elementary waves of isentropic flow in a variable cross-section duct, Commun. Math. Sci., 16 (2008), 1659-1684.  doi: 10.4310/CMS.2018.v16.n6.a8. [17] J. Smoller, Shock waves and Reaction-Diffusion Equations, 2nd ed., Sringer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0. [18] D. Tan, T. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equ., 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093. [19] M. D. Thanh, The Riemann problem for a nonisentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math., 69 (2009), 1501-1519.  doi: 10.1137/080724095. [20] G. D. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.  doi: 10.1016/j.jmaa.2013.02.026. [21] H. Yang and J. Wang, Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas., J. Math. Anal. Appl., 413 (2014), 800-820.  doi: 10.1016/j.jmaa.2013.12.025. [22] G. Yin and W. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations, Chin. Ann. Math. Ser. B, 29 (2008), 611-622.  doi: 10.1007/s11401-008-0009-x.

show all references

##### References:
 [1] N. Andrianov and G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., 64 (2004), 878-901.  doi: 10.1137/S0036139903424230. [2] N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 195 (2004), 434-464.  doi: 10.1016/j.jcp.2003.10.006. [3] M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flows, 12 (1986), 861-889. [4] T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs, Longman Scientific and technica, 1989. [5] G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350. [6] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039. [7] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech. Thermodyn., 4 (1992), 279-312.  doi: 10.1007/BF01129333. [8] L. H. Guo, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.  doi: 10.3934/cpaa.2010.9.431. [9] P. G. LeFloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci., 1 (2003), 763-797. [10] J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523.  doi: 10.1016/S0893-9659(00)00187-7. [11] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150 (1999), 425-467.  doi: 10.1006/jcph.1999.6187. [12] R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431 (2001), 239-271. [13] C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Diff. Equ., 249 (2010), 3024-3051.  doi: 10.1016/j.jde.2010.09.004. [14] W. Sheng, G. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal., 22 (2015), 115-128.  doi: 10.1016/j.nonrwa.2014.08.007. [15] W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, in: Mem. Amer. Math. Soc., AMS, Providence, 1999. doi: 10.1090/memo/0654. [16] W. Sheng and Q. Zhang, Interaction of the elementary waves of isentropic flow in a variable cross-section duct, Commun. Math. Sci., 16 (2008), 1659-1684.  doi: 10.4310/CMS.2018.v16.n6.a8. [17] J. Smoller, Shock waves and Reaction-Diffusion Equations, 2nd ed., Sringer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0. [18] D. Tan, T. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equ., 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093. [19] M. D. Thanh, The Riemann problem for a nonisentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math., 69 (2009), 1501-1519.  doi: 10.1137/080724095. [20] G. D. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.  doi: 10.1016/j.jmaa.2013.02.026. [21] H. Yang and J. Wang, Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas., J. Math. Anal. Appl., 413 (2014), 800-820.  doi: 10.1016/j.jmaa.2013.12.025. [22] G. Yin and W. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations, Chin. Ann. Math. Ser. B, 29 (2008), 611-622.  doi: 10.1007/s11401-008-0009-x.
The case $u_{s_-}<u_{s_+}$ and $u_{g_-}<u_{g_+}$
The limit Riemann solution as $u_{g_-}<u_{g_+}$ and $u_{s_-}<u_{s_+}$
The case $u_{g_-} = u_{g_+}$ and $U_{g_+}^{*}\in {\rm I\!I\!I}$
The formation of $\delta$ shock wave of phase $g$
 [1] Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 [2] Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001 [3] Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041 [4] Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 [5] Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 [6] Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591 [7] Gui-Qiang G. Chen, Qin Wang, Shengguo Zhu. Global solutions of a two-dimensional Riemann problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2475-2503. doi: 10.3934/cpaa.2021014 [8] Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151 [9] Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 [10] Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 [11] Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 [12] T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 [13] Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 [14] Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure and Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014 [15] Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021 [16] Shu Wang, Yixuan Zhao. Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022091 [17] Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure and Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431 [18] Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 [19] Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150 [20] Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

2020 Impact Factor: 1.916