Our purpose in this paper is to classify the non-topological solutions of equations
$ -\Delta u +\frac{4e^u}{1+e^u} = 4\pi\sum\limits_{i = 1}^k n_i\delta_{p_i}-4\pi\sum^l\limits_{j = 1}m_j\delta_{q_j} \quad{\rm in}\;\; \mathbb{R}^2,\;\;\;\;\;\;(E) $
where
Problem
$ u(x) = -2\ln |x|-2\ln\ln|x|+O(1)\quad{\rm as}\quad |x|\to+\infty $
and with total magnetic flux
Citation: |
[1] |
R. Beeker, Electromagnetic Fields and Interactions, Dover, New York, 1982.
![]() |
[2] |
A. Belavin and A. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 22 (1975), 245-247.
![]() |
[3] |
H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $\Delta u = V(x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
[4] |
M. Cantor, Elliptic operators and the decomposition of tensor fields, Bull. Amr. Math. Soc., 5 (1981), 235-262.
doi: 10.1090/S0273-0979-1981-14934-X.![]() ![]() ![]() |
[5] |
M. Chae, Existence of multi-string solutions of the gauged harmonic map model, Lett. Math. Phys., 59 (2002), 173-188.
doi: 10.1023/A: 1014912714390.![]() ![]() ![]() |
[6] |
H. Chan, C. Fu and C. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys., 231 (2002), 189-221.
doi: 10.1007/s00220-002-0691-6.![]() ![]() ![]() |
[7] |
H. Chen, H. Hajaiej, L. Veron, Qualitative properties of solutions to semilinear elliptic equations from the gravitational Maxwell Gauged O(3) Sigma model, arXiv: 2002.02685.
doi: 10.1016/j. na. 2021.112257.![]() ![]() ![]() |
[8] |
H. Chen and F. Zhou, Asymptotic behaviors of governing equation of Gauged Sigma model for Heisenberg ferromagnet, Nonlinear Anal., 196 (2020), 111788.
doi: 10.1016/j. na. 2020.111788.![]() ![]() ![]() |
[9] |
K. Cheng and C. Lin, On the Conformal Gaussian Curvature Equation in $ \mathbb{R}^2$, J. Differ. Equ., 146 (1998), 226-250.
doi: 10.1006/jdeq. 1998.3424.![]() ![]() ![]() |
[10] |
K. Cheng and C. Lin, Conformal metrics with prescribed nonpositive Gaussian on $ \mathbb{R}^2$, Calc. Var. Partial Differ. Equ., 11 (2000), 203-231.
doi: 10.1007/s005260000037.![]() ![]() ![]() |
[11] |
K. Cheng and W. Ni, On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$, Duke Math. J., 62 (1991), 721-737.
doi: 10.1215/S0012-7094-91-06231-9.![]() ![]() ![]() |
[12] |
K. Cheng and W. Ni, On the structure of the conformal Gaussian curvature equation on $ \mathbb{R}^2$ II, Math. Ann, 290 (1991), 671-680.
doi: 10.1007/BF01459266.![]() ![]() ![]() |
[13] |
J. Chern and Z. Yang, Evaluating solutions on an elliptic problem in a gravitational gauge field theory, J. Funct. Anal., 265 (2013), 1240-1263.
doi: 10.1016/j. jfa. 2013.05.041.![]() ![]() ![]() |
[14] |
N. Choi and J. Han, Classification of solutions of elliptic equations arising from a gravitational $O(3)$ gauge field model, J. Differ. Equ., 264 (2018), 4944-4988.
doi: 10.1016/j. jde. 2017.12.030.![]() ![]() ![]() |
[15] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin/New York, 1977.
![]() ![]() |
[16] |
J. Han and H. Huh, Existence of topological solutions in the Maxwell gauged $O(3)$ sigma models, J. Math. Anal. Appl., 386 (2012), 61-74.
doi: 10.1016/j. jmaa. 2011.07.046.![]() ![]() ![]() |
[17] |
W. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv., 34 (1960), 75-84.
doi: 10.1007/BF02565929.![]() ![]() ![]() |
[18] |
A. Jaffe and C. Taubes, Vortices and Monoples, Birkhäuser, Boston, 1980.
![]() ![]() |
[19] |
J. Jost and G. Wang, Analytic aspects of the Toda system: I. A Moser-Trudinger inequality, Commun. Pure Appl. Math., 54 (2001), 1289-1319.
doi: 10.1002/cpa. 10004.![]() ![]() ![]() |
[20] |
J. B. Keller, On solutions of $\Delta u = f(u)$, Commun. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa. 3160100402.![]() ![]() ![]() |
[21] |
F. Lin and Y. Yang, Gauged harmonic maps, Born-Infeld electromagnetism, and magnetic vortices, Commun. Pure Appl. Math., 56 (2003), 1631-1665.
doi: 10.1002/cpa. 10106.![]() ![]() ![]() |
[22] |
C. Lin, J. Wei and D. Ye, Classification and nondegeneracy of $SU(n+1)$ Toda system with singular sources, Invent. Math., 190 (2012), 169-207.
doi: 10.1007/s00222-012-0378-3.![]() ![]() ![]() |
[23] |
R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Commun. Pure Appl. Math., 32 (1979), 783-795.
doi: 10.1002/cpa. 3160320604.![]() ![]() ![]() |
[24] |
R. Osserman, On the inequality $\Delta u = f(u)$, Pac. J. Math., 7 (1957), 1641-1647.
![]() ![]() |
[25] |
A. Poliakovsky and G. Tarantello, On non-topological solutions for planar Liouville Systems of Toda-type, Commun. Math. Phys., 347 (2016), 223-270.
doi: 10.1007/s00220-016-2662-3.![]() ![]() ![]() |
[26] |
R. Rajaraman, Solitons and Instantons, Amsterdam: North Holland, 1982.
![]() ![]() |
[27] |
B. Schroers, Bogomol'nyi solitons in a gauged $O(3)$ sigma model, Phys. Lett. B., 356 (1995), 291-296.
doi: 10.1016/0370-2693(95)00833-7.![]() ![]() ![]() |
[28] |
K. Song, Improved existence results of solutions to the gravitational Maxwell gauged $O(3)$ sigma model, Proc. Amer. Math. Soc., 144 (2016), 3499-3505.
doi: 10.1090/proc/12967.![]() ![]() ![]() |
[29] |
Y. Wang and H. Chen, On anisotropic singularities for semi-linear elliptic equations in $ \mathbb{R}^2$, J. Math. Anal. Appl., 451 (2017), 931-953.
doi: 10.1016/j. jmaa. 2017.02.045.![]() ![]() ![]() |
[30] |
Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Science & Business Media, 2013.
doi: 10.1007/978-1-4757-6548-9.![]() ![]() ![]() |
[31] |
Y. Yang, A necessary and sufficient conditions for the existence of multisolitons in a self-dual gauged sigma model, Commun. Math. Phys., 181 (1996), 485-506.
![]() ![]() |
[32] |
Y. Yang, The Existence of Solitons in Gauged Sigma Models with Broken Symmetry: Some Remarks, Lett. Math. Phys., 40 (1997), 177-189.
doi: 10.1023/A: 1007363726173.![]() ![]() ![]() |
[33] |
L. Véron, Elliptic Equations Involving Measures, Stationary Partial Differential Equations, North-Holland, Amsterdam, 2004.
doi: 10.1016/S1874-5733(04)80010-X.![]() ![]() ![]() |