We obtain characterizations of nonuniform dichotomies, defined by general growth rates, based on admissibility conditions. Additionally, we use the obtained characterizations to derive robustness results for the considered dichotomies. As particular cases, we recover several results in the literature concerning nonuniform exponential dichotomies and nonuniform polynomial dichotomies as well as new results for nonuniform dichotomies with logarithmic growth.
Citation: |
[1] |
M. G. Babuţia, M. Megan and I. L. Popa, On $(h, k)$-dichotomies for nonautonomous linear difference equations in Banach spaces, Int. J. Differ. Equ., (2013), 7 pp.
doi: 10.1155/2013/761680.![]() ![]() ![]() |
[2] |
L. Barreira, J. Chu and C. Valls, Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 81 (2013), 153-169.
doi: 10.1007/s00032-013-0198-y.![]() ![]() ![]() |
[3] |
L. Barreira, D. Dragičević and C. Valls, Admissibility and Hyperbolicity, Springerbriefs In Mathematics, Springer, 2018.
doi: 10.1007/978-3-319-90110-7.![]() ![]() ![]() |
[4] |
L. Barreira, D. Dragičević and C. Valls, Admissibility and nonuniformly hyperbolic sets, Electron. J. Qual. Theory Differ. Equ., 10 (2016), 1-15.
doi: 10.14232/ejqtde.2016.1.10.![]() ![]() ![]() |
[5] |
L. Barreira, D. Dragičević and C. Valls, Nonuniform hyperbolicity and one-sided admissibility, Rend. Lincei Mat. Appl., 27 (2016), 1-13.
doi: 10.4171/rlm/732.![]() ![]() ![]() |
[6] |
L. Barreira and C. Valls, Growth rates and nonuniform hyperbolicity, Discrete Contin. Dyn. Syst., 22 (2008), 509-528.
doi: 10.3934/dcds.2008.22.509.![]() ![]() ![]() |
[7] |
L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-74775-8.![]() ![]() ![]() |
[8] |
L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 71 (2009), 5208-5219.
doi: 10.1016/j.na.2009.04.005.![]() ![]() ![]() |
[9] |
A. J. G. Bento and C. M. Silva, Generalized nonuniform dichotomies and local stable manifolds, J. Dynam. Differ. Equ., 25 (2013), 1139-1158.
doi: 10.1007/s10884-013-9331-4.![]() ![]() ![]() |
[10] |
A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122-148.
doi: 10.1016/j.jfa.2009.01.032.![]() ![]() ![]() |
[11] |
A. J. G. Bento and C. M. Silva, Stable manifolds for non-autonomous equations with non-uniform polynomial dichotomies, Q. J. Math., 63 (2012), 275-308.
doi: 10.1093/qmath/haq047.![]() ![]() ![]() |
[12] |
X. Chang, J. Zhang and J. Qin, Robustness of nonuniform $(\mu, \nu)$-dichotomies in Banach spaces, J. Math. Anal. Appl., 387 (2012), 582-594.
doi: 10.1016/j.jmaa.2011.09.026.![]() ![]() ![]() |
[13] |
C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr. 70, Amer. Math. Soc., Providence, RI, 1999.
doi: 10.1090/surv/070.![]() ![]() ![]() |
[14] |
W. Coppel, Dichotomies in Stability Theory, Springer, New York, 1981.
![]() ![]() |
[15] |
M. O. Czarnecki and L. Rifford, Approximation and regularization of Lipschitz functions: convergence of the gradients, Trans. Amer. Math. Soc., 358 (2006), 4467-4520.
doi: 10.1090/S0002-9947-06-04103-1.![]() ![]() ![]() |
[16] |
Ju. L. Daleckiǐand M. G. Kreǐn, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, RI, 1974.
![]() ![]() |
[17] |
D. Dragičević, Admissibility and polynomial dichotomies for evolution families, Commun. Pure Appl. Anal., 19 (2020), 1321-1336.
doi: 10.3934/cpaa.2020064.![]() ![]() ![]() |
[18] |
D. Dragičević, Admissibility and nonuniform polynomial dichotomies, Math. Nachr., 293 (2019), 226-243.
doi: 10.1002/mana.201800291.![]() ![]() ![]() |
[19] |
N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math., 174 (2014), 265-284.
doi: 10.1007/s00605-013-0517-y.![]() ![]() ![]() |
[20] |
J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, Academic, New York, 1966.
![]() ![]() |
[21] |
Ng uyen Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line, Integral Equ. Oper. Theory, 32 (1998), 332-353.
doi: 10.1007/BF01203774.![]() ![]() ![]() |
[22] |
R. Naulin and M. Pinto, Roughness of $(h, k)$-dichotomies, J. Differ. Equ., 118 (1995), 20-35.
doi: 10.1006/jdeq.1995.1065.![]() ![]() ![]() |
[23] |
O. Perron, Die stabilitätsfrage bei differentialgleichungen, Math. Z., 32 (1930), 703-728.
doi: 10.1007/BF01194662.![]() ![]() ![]() |
[24] |
Y. Pesin, Families of invariant manifolds that corresponding to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976) 1332–1379, (Russian) English transl. Math. USSR-Izv. 10 (1976), 1261–1305.
![]() ![]() |
[25] |
Y. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32 (1977), 55-114.
![]() ![]() |
[26] |
Y. Pesin, Geodesic flows in closed Riemannian manifolds without focal points, Math. USSR-Izv., 11 (1977), 1195-1228.
![]() ![]() |
[27] |
M. Pinto, Discrete dichotomies, Comput. Math. Appl., 28 (1994), 259-270.
doi: 10.1016/0898-1221(94)00114-6.![]() ![]() ![]() |
[28] |
P. Preda, A. Pogan and C. Preda, $(L^p; L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equ. Oper. Theory, 49 (2004), 405-418.
doi: 10.1007/s00020-002-1268-7.![]() ![]() ![]() |
[29] |
C. Preda, P. Preda and A. Craciunescu, A version of a theorem of R. Datko for nonuniform exponential contractions, J. Math. Anal. Appl., 385 (2012), 572-581.
doi: 10.1016/j.jmaa.2011.06.082.![]() ![]() ![]() |
[30] |
C. Preda, P. Preda and A. Craciunescu, Criterions for detecting the existence of the exponential dichotomies in the asymptotic behavior of the solutions of variational equations, J. Funct. Anal., 258 (2010), 729-757.
doi: 10.1016/j.jfa.2009.09.002.![]() ![]() ![]() |
[31] |
B. Sasu and A. L. Sasu, On the dichotomic behavior of discrete dynamical systems on the half-line, Discrete Contin. Dyn. Syst., 33 (2013), 3057-3084.
doi: 10.3934/dcds.2013.33.3057.![]() ![]() ![]() |
[32] |
A. L. Sasu, M. G. Babuţia and B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 137 (2013), 466-484.
doi: 10.1016/j.bulsci.2012.11.002.![]() ![]() ![]() |
[33] |
A. L. Sasu and B. Sasu, Admissibility criteria for nonuniform dichotomic behavior of nonautonomous systems on the whole line, Appl. Math. Comput., 378 (2020), 125167.
doi: 10.1016/j. amc. 2020.125167.![]() ![]() ![]() |
[34] |
B. Sasu and A. L. Sasu, A. L. Sasu and B. Sasu, Exponential dichotomy on the real line and admissibility of function spaces, Integral Equ. Oper. Theory, 54 (2006), 113-130.
doi: 10.1007/s00020-004-1347-z.![]() ![]() ![]() |
[35] |
B. Sasu and A. L. Sasu, Integral equations in the study of the asymptotic behavior of skew-product flows, Asymptotic Anal., 68 (2010), 135-153.
![]() ![]() |
[36] |
L. Zhou, K. Lu and W. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differ. Equ., 262 (2017), 682-747.
doi: 10.1016/j.jde.2016.09.035.![]() ![]() ![]() |
[37] |
L. Zhou and W. Zhang, Exponential dichotomy and $(\ell^p, \ell^q)$-admissibility on the half-line, J. Math. Anal. Appl., 316 (2006), 397-408.
doi: 10.1016/j.jmaa.2005.04.047.![]() ![]() ![]() |