October  2021, 20(10): 3429-3463. doi: 10.3934/cpaa.2021113

Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities

1. 

Universidade Federal de Goiás, IME, Goiânia-GO, Brazil

2. 

Universidade Federal de Jataí, Jataí-GO, Brazil

* Corresponding author

Received  June 2020 Revised  May 2021 Published  October 2021 Early access  June 2021

Fund Project: The second author was partially supported by CNPq and FAPDF with grants 309026/2020-2 and 16809.78.45403.25042017, respectively

It is established existence of ground and bound state solutions for Choquard equation considering concave-convex nonlinearities in the following form
$ \begin{equation*} \begin{cases} -\Delta u +V(x) u = (I_\alpha* |u|^p)|u|^{p-2}u+ \lambda |u|^{q-2}u \, {\rm{\;in\;}}\, \mathbb{R}^N, \\ \ u\in H^1( \mathbb{R}^N) \end{cases} \end{equation*} $
where
$ \lambda > 0, N \geq 3, \alpha \in (0, N) $
. The potential
$ V $
is a continuous function and
$ I_\alpha $
denotes the standard Riesz potential. Assume also that
$ 1 < q < 2 $
,
$ 2_\alpha < p < 2^*_\alpha $
where
$ 2_\alpha = (N+\alpha)/N $
,
$ 2_\alpha = (N+\alpha)/(N-2) $
. Our main contribution is to consider a specific condition on the parameter
$ \lambda > 0 $
taking into account the nonlinear Rayleigh quotient. More precisely, there exists
$ \lambda^* > 0 $
such that our main problem admits at least two positive solutions for each
$ \lambda \in (0, \lambda^*] $
. In order to do that we combine Nehari method with a fine analysis on the nonlinear Rayleigh quotient. The parameter
$ \lambda^*> 0 $
is optimal in some sense which allow us to apply the Nehari method.
Citation: M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart. Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3429-3463. doi: 10.3934/cpaa.2021113
References:
[1]

C. O. Alves and Ji anfu Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. Vol., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar

[2]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext. Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149.  Google Scholar

[5]

K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Differ. Equ., 69 (2007), 1-9.   Google Scholar

[6]

K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differ. Int. Equ., 22 (2009), 1097-1114.   Google Scholar

[7]

M. L. M. Carvalho, Y. Ilyasov and C. A. Santos, Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients, arXiv: 1906.07759. Google Scholar

[8]

Yi-Hsin Cheng and Tsung-Fang Wu, Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential, Commun. Pure Appl. Anal., 15 (2016), 1534-0392.  doi: 10.3934/cpaa.2016044.  Google Scholar

[9]

S. Chen and X. Tang, Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 114 (2020), 14 pp. doi: 10.1007/s13398-019-00775-5.  Google Scholar

[10]

P. Drábek and J. Milota, Methods of Nonlinear Analysis, Basler Lehrbücher, 2013. doi: 10.1007/978-3-0348-0387-8.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.  Google Scholar

[12]

E. P. Gross, Physics of Many-Particle Systems, Gordon Breach, New York, 1996. Google Scholar

[13]

Y. Huang, Tsung-Fang Wu and Y. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, II, Commun. Contemp. Math., 17 (2015), 1450045. doi: 10.1142/S021919971450045X.  Google Scholar

[14]

X. Li, X. Liu and S. Mab, Infinitely many bound states for Choquard equations with local nonlinearities, Nonlinear Anal., 189 (2019), 111583. doi: 10.1016/j.na.2019.111583.  Google Scholar

[15]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[16]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[17]

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.2307/1993333.  Google Scholar

[18]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.  doi: 10.1007/BF02559588.  Google Scholar

[19]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[20]

X. Li and S. Ma, Choquard equations with critical nonlinearities, Communications in Contemporary Mathematics, 22 (2020), 1950023. doi: 10.1142/S0219199719500238.  Google Scholar

[21]

R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600.  doi: 10.1007/BF02105068.  Google Scholar

[22]

S. I. Pokhozhaev, The fibration method for solving nonlinear boundary value problems, Trudy Mat. Inst. Steklov., 192 (1990), 146-163.   Google Scholar

[23]

P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[24]

S. Pekar, Untersuchung Ber Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[25]

P. Pucci and J. Serrin, The maximum principle, in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[26]

P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of Math. Sci. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. doi: 10.1090/cbms/065.  Google Scholar

[27]

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270–291. doi: 10.1007/BF00946631.  Google Scholar

[28]

C. A. Santos, R. L. Alves and K. Silva, Multiplicity of negative-energy solutions for singular-superlinear Schrödinger equations with indefinite-sign potential, (To appear in Communications in Contemporary Mathematics). Google Scholar

[29]

M. Struwe, Variational methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04194-9.  Google Scholar

[30]

Y. Il'yasov and K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method, Proc. Amer. Math. Soc., 146 (2018), 2925-2935.  doi: 10.1090/proc/13972.  Google Scholar

[31]

Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal., 49 (2017), 683-714.  doi: 10.12775/tmna.2017.005.  Google Scholar

[32]

Y. Il'yasov, On nonlocal existence results for elliptic equations with convex-concave nonlinearities, Nonl. Anal.: Th., Meth. Appl., 61 (2005), 211-236.  doi: 10.1016/j.na.2004.10.022.  Google Scholar

[33]

M. Willem, Minimax Theorems, Birkhauser Boston, Basel, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[34]

Tsung-Fang Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, J Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

show all references

References:
[1]

C. O. Alves and Ji anfu Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. Vol., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar

[2]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext. Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149.  Google Scholar

[5]

K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Differ. Equ., 69 (2007), 1-9.   Google Scholar

[6]

K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differ. Int. Equ., 22 (2009), 1097-1114.   Google Scholar

[7]

M. L. M. Carvalho, Y. Ilyasov and C. A. Santos, Separating of critical points on the Nehari manifold via the nonlinear generalized Rayleigh quotients, arXiv: 1906.07759. Google Scholar

[8]

Yi-Hsin Cheng and Tsung-Fang Wu, Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential, Commun. Pure Appl. Anal., 15 (2016), 1534-0392.  doi: 10.3934/cpaa.2016044.  Google Scholar

[9]

S. Chen and X. Tang, Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. RACSAM, 114 (2020), 14 pp. doi: 10.1007/s13398-019-00775-5.  Google Scholar

[10]

P. Drábek and J. Milota, Methods of Nonlinear Analysis, Basler Lehrbücher, 2013. doi: 10.1007/978-3-0348-0387-8.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.  Google Scholar

[12]

E. P. Gross, Physics of Many-Particle Systems, Gordon Breach, New York, 1996. Google Scholar

[13]

Y. Huang, Tsung-Fang Wu and Y. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, II, Commun. Contemp. Math., 17 (2015), 1450045. doi: 10.1142/S021919971450045X.  Google Scholar

[14]

X. Li, X. Liu and S. Mab, Infinitely many bound states for Choquard equations with local nonlinearities, Nonlinear Anal., 189 (2019), 111583. doi: 10.1016/j.na.2019.111583.  Google Scholar

[15]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[16]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[17]

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.2307/1993333.  Google Scholar

[18]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.  doi: 10.1007/BF02559588.  Google Scholar

[19]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[20]

X. Li and S. Ma, Choquard equations with critical nonlinearities, Communications in Contemporary Mathematics, 22 (2020), 1950023. doi: 10.1142/S0219199719500238.  Google Scholar

[21]

R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600.  doi: 10.1007/BF02105068.  Google Scholar

[22]

S. I. Pokhozhaev, The fibration method for solving nonlinear boundary value problems, Trudy Mat. Inst. Steklov., 192 (1990), 146-163.   Google Scholar

[23]

P. Drabek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[24]

S. Pekar, Untersuchung Ber Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[25]

P. Pucci and J. Serrin, The maximum principle, in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[26]

P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conf. Board of Math. Sci. Reg. Conf. Ser. in Math., No. 65, Amer. Math. Soc., 1986. doi: 10.1090/cbms/065.  Google Scholar

[27]

P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270–291. doi: 10.1007/BF00946631.  Google Scholar

[28]

C. A. Santos, R. L. Alves and K. Silva, Multiplicity of negative-energy solutions for singular-superlinear Schrödinger equations with indefinite-sign potential, (To appear in Communications in Contemporary Mathematics). Google Scholar

[29]

M. Struwe, Variational methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04194-9.  Google Scholar

[30]

Y. Il'yasov and K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method, Proc. Amer. Math. Soc., 146 (2018), 2925-2935.  doi: 10.1090/proc/13972.  Google Scholar

[31]

Y. Il'yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh's quotient, Topol. Methods Nonlinear Anal., 49 (2017), 683-714.  doi: 10.12775/tmna.2017.005.  Google Scholar

[32]

Y. Il'yasov, On nonlocal existence results for elliptic equations with convex-concave nonlinearities, Nonl. Anal.: Th., Meth. Appl., 61 (2005), 211-236.  doi: 10.1016/j.na.2004.10.022.  Google Scholar

[33]

M. Willem, Minimax Theorems, Birkhauser Boston, Basel, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[34]

Tsung-Fang Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^N$ involving sign-changing weight, J Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

Figure 1.  $ \lambda\in (0,\lambda_*) $
Figure 2.  $ \lambda = \lambda_* $
Figure 3.  $ \lambda\in(\lambda_*,\lambda^*) $
Figure 4.  The functions $ Q_n(t) $, $ Q_e(t) $
Figure 5.  $ \lambda\in(0,\lambda_*) $
Figure 6.  $ \lambda = \lambda_* $
Figure 7.  $ \lambda\in(\lambda_*,\lambda^*) $
Figure 8.  $ \lambda_1<\lambda_2 $
Figure 9.  $ \lambda_1<\lambda_2 $
[1]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

[2]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[3]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[4]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[5]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[6]

Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021036

[7]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[8]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[9]

Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008

[10]

Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815

[11]

João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621

[12]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[13]

Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150

[14]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[15]

J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095

[16]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[17]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann problems with indefinite potential and concave terms. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2561-2616. doi: 10.3934/cpaa.2015.14.2561

[18]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[19]

Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173

[20]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (55)
  • HTML views (168)
  • Cited by (0)

[Back to Top]