-
Previous Article
Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics
- CPAA Home
- This Issue
-
Next Article
Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities
A new Carleson measure adapted to multi-level ellipsoid covers
College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China |
We develop highly anisotropic Carleson measure over multi-level ellipsoid covers $ \Theta $ of $ \mathbb{R}^n $ that are highly anisotropic in the sense that the ellipsoids can change rapidly from level to level and from point to point. Then we show that the Carleson measure $ \mu $ is sufficient for which the integral defines a bounded operator from $ H^p(\Theta) $ to $ L^p(\mathbb{R}^{n+1}, \, \mu),\ 0
References:
[1] |
M. Bownik,
Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), 1-122.
doi: 10.1090/memo/0781. |
[2] |
M. Bownik, B. Li and J. Li, Variable anisotropic singular integral operators, arXiv: 2004.09707v2. |
[3] |
L. Carleson,
Interpolation by bounded analytic functions and the corona problem, Ann. Math., 76 (1962), 547-559.
doi: 10.2307/1970375. |
[4] |
A. P. Calderón and A. Torchinsky,
Parabolic maximal functions associated with a distribution, Adv. Math., 16 (1975), 1-64.
doi: 10.1016/0001-8708(75)90099-7. |
[5] |
W. Dahmen, S. Dekel and P. Petrushev,
Two-level-split decomposition of anisotropic Besov spaces, Constr. Approx., 31 (2010), 149-194.
doi: 10.1007/s00365-009-9058-y. |
[6] |
S. Dekel, Y. Han and P. Petrushev,
Anisotropic meshless frames on ${{{{{\mathbb R}}}^n}}$, J. Fourier Anal. Appl., 15 (2009), 634-662.
doi: 10.1007/s00041-009-9070-4. |
[7] |
S. Dekel, P. Petrushev and T. Weissblat,
Hardy spaces on ${{{{{\mathbb R}}}^n}}$ with pointwise variable anisotropy, J. Fourier Anal. Appl., 17 (2011), 1066-1107.
doi: 10.1007/s00041-011-9176-3. |
[8] |
J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math, Providence, 2001.
doi: 10.1090/gsm/029. |
[9] |
L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009.
doi: 10.1007/978-0-387-09434-2. |
[10] |
S. Gadbois and T. Sledd,
Careson measures on spaces of homogeneous type, Trans. Amer. Math Soc., 341 (1994), 841-862.
doi: 10.1090/S0002-9947-1994-1149122-2. |
[11] |
E. Harboure, O. Salinas and B. Viviani,
A look at $\text BMO_{\varphi}(\omega)$ through Carleson measures, J. Fourier Anal. Appl., 13 (2007), 267-284.
doi: 10.1007/s00041-005-5044-3. |
[12] |
S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math., 15 (2013), 37 pp.
doi: 10.1142/S0219199713500296. |
[13] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993.
![]() ![]() |
show all references
References:
[1] |
M. Bownik,
Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), 1-122.
doi: 10.1090/memo/0781. |
[2] |
M. Bownik, B. Li and J. Li, Variable anisotropic singular integral operators, arXiv: 2004.09707v2. |
[3] |
L. Carleson,
Interpolation by bounded analytic functions and the corona problem, Ann. Math., 76 (1962), 547-559.
doi: 10.2307/1970375. |
[4] |
A. P. Calderón and A. Torchinsky,
Parabolic maximal functions associated with a distribution, Adv. Math., 16 (1975), 1-64.
doi: 10.1016/0001-8708(75)90099-7. |
[5] |
W. Dahmen, S. Dekel and P. Petrushev,
Two-level-split decomposition of anisotropic Besov spaces, Constr. Approx., 31 (2010), 149-194.
doi: 10.1007/s00365-009-9058-y. |
[6] |
S. Dekel, Y. Han and P. Petrushev,
Anisotropic meshless frames on ${{{{{\mathbb R}}}^n}}$, J. Fourier Anal. Appl., 15 (2009), 634-662.
doi: 10.1007/s00041-009-9070-4. |
[7] |
S. Dekel, P. Petrushev and T. Weissblat,
Hardy spaces on ${{{{{\mathbb R}}}^n}}$ with pointwise variable anisotropy, J. Fourier Anal. Appl., 17 (2011), 1066-1107.
doi: 10.1007/s00041-011-9176-3. |
[8] |
J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math, Providence, 2001.
doi: 10.1090/gsm/029. |
[9] |
L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009.
doi: 10.1007/978-0-387-09434-2. |
[10] |
S. Gadbois and T. Sledd,
Careson measures on spaces of homogeneous type, Trans. Amer. Math Soc., 341 (1994), 841-862.
doi: 10.1090/S0002-9947-1994-1149122-2. |
[11] |
E. Harboure, O. Salinas and B. Viviani,
A look at $\text BMO_{\varphi}(\omega)$ through Carleson measures, J. Fourier Anal. Appl., 13 (2007), 267-284.
doi: 10.1007/s00041-005-5044-3. |
[12] |
S. Hou, D. Yang and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math., 15 (2013), 37 pp.
doi: 10.1142/S0219199713500296. |
[13] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993.
![]() ![]() |
[1] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1629-1645. doi: 10.3934/dcdsb.2021104 |
[2] |
Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411 |
[3] |
Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020 |
[4] |
Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171 |
[5] |
Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061 |
[6] |
Yong-Jung Kim. A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 187-207. doi: 10.3934/dcds.2011.30.187 |
[7] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[8] |
Jose-Luis Lisani, Antoni Buades, Jean-Michel Morel. How to explore the patch space. Inverse Problems and Imaging, 2013, 7 (3) : 813-838. doi: 10.3934/ipi.2013.7.813 |
[9] |
Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91 |
[10] |
Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013 |
[11] |
M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313 |
[12] |
Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial and Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084 |
[13] |
Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887 |
[14] |
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59. |
[15] |
Lei Wang, Meijun Zhu. Liouville theorems on the upper half space. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5373-5381. doi: 10.3934/dcds.2020231 |
[16] |
Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38. |
[17] |
Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37 |
[18] |
Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016 |
[19] |
E. N. Dancer. Some remarks on half space problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 83-88. doi: 10.3934/dcds.2009.25.83 |
[20] |
Sergio Andrés De Raco, Viktoriya Semeshenko. Labor mobility and industrial space in Argentina. Journal of Dynamics and Games, 2019, 6 (2) : 107-118. doi: 10.3934/jdg.2019008 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]