This paper is concerned with the existence and uniqueness of the strong solution to the incompressible Navier-Stokes equations with Navier-slip boundary conditions in a two-dimensional strip domain where the slip coefficients may not have defined sign. In the meantime, we also establish a number of Gagliardo-Nirenberg inequalities in the corresponding Sobolev spaces which will be applicable to other similar situations.
Citation: |
[1] |
Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flow over periodic rough boundaries, J. Comput. Phys., 147 (1998), 187-218.
doi: 10.1006/jcph.1998.6088.![]() ![]() ![]() |
[2] |
C. Amrouche and A. Rejaiba, $L^p$ theory for Stokes and Navier-Stokes equations with Navier boundary condition, J. Differ. Equ., 256 (2014), 1515-1547.
doi: 10.1016/j.jde.2013.11.005.![]() ![]() ![]() |
[3] |
C. Amrouche and N. Seloula, On the Stokes equations with the Navier-type boundary conditions, Differ. Equ. Appl., 3 (2011), 581-607.
doi: 10.7153/dea-03-36.![]() ![]() ![]() |
[4] |
S. Antontsev and H. de Oliveira, Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time, RIMS Kôkyûroku Bessatsu, B1 (2007), 21–41.
![]() ![]() |
[5] |
E. Bänsch, Finite element discretization of the Navier-Stokes equations with free capillary surface, Numer. Math., 88 (2001), 203-235.
doi: 10.1007/PL00005443.![]() ![]() ![]() |
[6] |
G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.
![]() |
[7] |
D. Chauhan and K. Shekhawat, Heat transfer in Couette flow of a compressible Newtonian fluid in the presence of a naturally permeable boundary, J. Phys.D: Appl. Phys., 26 (1993), 933-936.
![]() |
[8] |
T. Clopeau, A. Mikelić and R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625-1636.
doi: 10.1088/0951-7715/11/6/011.![]() ![]() ![]() |
[9] |
S. Ding, Q. Li and Z. Xin, Stability analysis for the incompressible Navier-Stokes equations with Navier boundary conditions, J. Math. Fluid Mech., 20 (2018), 603-629.
doi: 10.1007/s00021-017-0337-2.![]() ![]() ![]() |
[10] |
L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence RI, 1998.
![]() ![]() |
[11] |
G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equuations, Springer Monographs in Mathematics, 2$^nd$ Edition, 2011.
doi: 10.1007/978-0-387-09620-9.![]() ![]() ![]() |
[12] |
G. Gie and J. Kelliher, Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions, J. Differ. Equ., 253 (2012), 1862-1892.
doi: 10.1016/j.jde.2012.06.008.![]() ![]() ![]() |
[13] |
A. Haase, J. Wood, R. Lammertink, J. Snoeijer, Why bumpy is better: the role of the dissipaption distribution in slip flow over a bubble mattress, Phys. Rev. Fluid, 1 (2016), 054101.
![]() |
[14] |
W. Jäger and A. Mikelić, On the Roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differ. Equ., 170 (2001), 96-122.
doi: 10.1006/jdeq.2000.3814.![]() ![]() ![]() |
[15] |
V. John, Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equation-numerical test and aspect of the implementation, J. Comput. Appl. Math., 147 (2002), 287-300.
doi: 10.1016/S0377-0427(02)00437-5.![]() ![]() ![]() |
[16] |
J. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain in plane, SIAM J. Math. Anal., 38 (2006), 210-232.
doi: 10.1137/040612336.![]() ![]() ![]() |
[17] |
H. Li and X. Zhang, Stability of plane Couette flow for the compressible Navier-Stokes equations with Navier-slip boundary, J. Differ. Equ., 263 (2017), 1160-1187.
doi: 10.1016/j.jde.2017.03.009.![]() ![]() ![]() |
[18] |
P. Lions, Mathematical Topics in Fluid Mechanics, Volume I, Incompressible Models, Oxford Science Publications, 1998.
![]() ![]() |
[19] |
J. Magnaudet, M. Riverot and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech., 284 (1995), 97-135.
doi: 10.1017/S0022112095000280.![]() ![]() ![]() |
[20] |
C. Navier, Sur les lois de l'équilibre et du mouvement des corps élastiques, Mem. Acad. R. Sci. Inst. France, 6 (1827), 369.
![]() |
[21] |
T. Qian, X. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.
doi: 10.1103/PhysRevE.68.016306.![]() ![]() |
[22] |
J. Serrin, Mathematical Principles of Classical Fluid Mechanics, Encyclopedia of Physics VIII/1, Springer-Verlag, Berlin, 1959.
![]() ![]() |
[23] |
V. Solonnikov and V. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov., 125(1973), 196–210; translation in Proc. Steklov Inst. Math., 125 (1973), 186–199.
![]() ![]() |
[24] |
R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea edition, Providence RI, 2001.
doi: 10.1090/chel/343.![]() ![]() ![]() |
[25] |
H. da Veiga, On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Commun. Pure Appl. Math., LVIII (2005), 552-577.
doi: 10.1002/cpa.20036.![]() ![]() ![]() |
[26] |
Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Commun. Pure Appl. Math., 60 (2007), 1027-1055.
doi: 10.1002/cpa.20187.![]() ![]() ![]() |
[27] |
Y. Xiao and Z. Xin, On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions, Commun. Math. Stat., 1 (2013), 259-279.
doi: 10.1007/s40304-013-0014-6.![]() ![]() ![]() |