October  2021, 20(10): 3567-3588. doi: 10.3934/cpaa.2021122

Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain

Department of Mathematics, Nanjing University, Nanjing, 210093, China

* Corresponding author

Received  April 2021 Revised  June 2021 Published  October 2021 Early access  July 2021

Fund Project: This work is supported by NSFC (Grant Nos. 12071212, 11971234) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

We study a kinetic-fluid model in a $ 3D $ bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient $ \gamma> 3/2 $) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.

Citation: Fucai Li, Yue Li. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3567-3588. doi: 10.3934/cpaa.2021122
References:
[1]

S. BerresR. BürgerK. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.   Google Scholar

[2]

D. Bresch and P. E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188 (2018), 577-684.   Google Scholar

[3]

R. BürgerW. L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech., 80 (2000), 79-92.   Google Scholar

[4]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.   Google Scholar

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal., 33 (2016), 273-307.   Google Scholar

[6]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.   Google Scholar

[7]

Y. P. Choi and J. Jung, Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, preprint, arXiv: 1912.13134v2. Google Scholar

[8]

Y. P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, arXiv: 1901.01221v1 Google Scholar

[9]

R. DenkM. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.   Google Scholar

[10]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.   Google Scholar

[11]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.   Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82 (2003), 949-973.   Google Scholar

[13]

T. KarperA. Mellet and K. Trivisa, Existence of weak solutions to the kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.   Google Scholar

[14]

F. Li and Y. Li, Global weak solutions and asymptotic analysis for a kinetic-fluid model with a heterogeneous friction force, preprint.  Google Scholar

[15]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.   Google Scholar

[16]

Y. Li, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data, Z. Angew. Math. Phys., 72 (2021), 29 pp.  Google Scholar

[17]

P. L. Lions, Mathematical Topics in Fluid Mechanics-Volume 2: Compressible Models, Oxford Science Publications, Oxford, 1998.  Google Scholar

[18]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.   Google Scholar

[19]

A. Mellet and A. Vasseur, Asymptotic anslysis for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.   Google Scholar

[20]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations: theory and shape optimization, Springer-Verlag, New York, 2012. doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[21]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-74.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

show all references

References:
[1]

S. BerresR. BürgerK. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.   Google Scholar

[2]

D. Bresch and P. E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188 (2018), 577-684.   Google Scholar

[3]

R. BürgerW. L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech., 80 (2000), 79-92.   Google Scholar

[4]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.   Google Scholar

[5]

J. A. CarrilloY. P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal., 33 (2016), 273-307.   Google Scholar

[6]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.   Google Scholar

[7]

Y. P. Choi and J. Jung, Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, preprint, arXiv: 1912.13134v2. Google Scholar

[8]

Y. P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, arXiv: 1901.01221v1 Google Scholar

[9]

R. DenkM. Hieber and J. Prüss, Optimal $L^p-L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.   Google Scholar

[10]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.   Google Scholar

[11]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.   Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82 (2003), 949-973.   Google Scholar

[13]

T. KarperA. Mellet and K. Trivisa, Existence of weak solutions to the kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.   Google Scholar

[14]

F. Li and Y. Li, Global weak solutions and asymptotic analysis for a kinetic-fluid model with a heterogeneous friction force, preprint.  Google Scholar

[15]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.   Google Scholar

[16]

Y. Li, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data, Z. Angew. Math. Phys., 72 (2021), 29 pp.  Google Scholar

[17]

P. L. Lions, Mathematical Topics in Fluid Mechanics-Volume 2: Compressible Models, Oxford Science Publications, Oxford, 1998.  Google Scholar

[18]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.   Google Scholar

[19]

A. Mellet and A. Vasseur, Asymptotic anslysis for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.   Google Scholar

[20]

P. Plotnikov and J. Sokolowski, Compressible Navier-Stokes Equations: theory and shape optimization, Springer-Verlag, New York, 2012. doi: 10.1007/978-3-0348-0367-0.  Google Scholar

[21]

C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-74.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[1]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[2]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[3]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[4]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[5]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[6]

Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021146

[7]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[8]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[9]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080

[12]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[13]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[14]

Zaihong Jiang, Li Li, Wenbo Lu. Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021126

[15]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[16]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[17]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[18]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[19]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[20]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (62)
  • HTML views (153)
  • Cited by (0)

Other articles
by authors

[Back to Top]