October  2021, 20(10): 3655-3682. doi: 10.3934/cpaa.2021125

Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia

* Corresponding author

Received  December 2020 Revised  June 2021 Published  October 2021 Early access  July 2021

We consider the conserved phase-field system
$\left\{ \begin{array}{l}\tau {\phi _t} + N(\delta {\phi _t} + N\phi + g(\phi ) - u) = 0,\\\epsilon{u_t} + {\phi _t} + Nu = 0,\end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right)$
where
$ \tau>0 $
is a relaxation time,
$ \delta>0 $
is the viscosity parameter,
$ \epsilon\in (0,1] $
is the heat capacity,
$ \phi $
is the order parameter,
$ u $
is the absolute temperature, the Laplace operator
$ N = -\Delta:{\mathscr D}(N)\to \dot L^2(\Omega) $
is subject to either Neumann boundary conditions (in which case
$ \Omega\subset{\mathbb R}^d $
is a bounded domain with smooth boundary) or periodic boundary conditions (in which case
$ \Omega = \Pi_{i = 1}^d(0,L_i), $
$ L_i>0 $
),
$ d = 1,2 $
or 3, and
$ G(\phi) = \int_0^\phi g(\sigma)d\sigma $
is a double-well potential. Let
$ j = 1 $
when
$ d = 1 $
and
$ j = 2 $
when
$ d = 2 $
or 3. We assume that
$ g\in{\mathcal C}^{j+1}(\mathbb R) $
and satisfies the conditions
$ g'(\phi)\geq -{\mathscr C}_1 $
,
$ G(\phi)\ge -{\mathscr C}_2 $
and
$ (\phi-m(\phi))g(\phi)-{\mathscr C}_3(m(\phi))G(s)\ge -{\mathscr C}_4(m(\phi)) $
(
$ {\mathscr C}_5(\varrho)\le {\mathscr C}_l(m(\phi))\le {\mathscr C}_6(\varrho) $
,
$ l = 3,4 $
, whenever
$ |m(\phi)|\le \varrho $
), where
$ \varrho,{\mathscr C}_1, {\mathscr C}_2,{\mathscr C}_4\ge 0 $
,
$ {\mathscr C}_3, {\mathscr C}_5,{\mathscr C}_6>0 $
and
$ m(\phi) = \frac{1}{|\Omega|}\int_\Omega\phi(x)dx $
. For instance,
$ g(\phi) = \sum_{k = 1}^{2p-1}a_k\phi^k, $
$ p\in{\mathbb N}, $
$ p\ge 2, $
$ a_{2p-1}>0, $
satisfies all the above-mentioned conditions. We then prove a well-posedness result, the existence of the global attractor and a family of exponential attractors in the phase space
$ {\mathcal V}_j = {\mathscr D}(N^{j/2})\times{\mathscr D}(N^{j/2}) $
equipped with the norm
$ \|(\psi,\varphi)\|_{{\mathcal V}_{j}} = (\|N^{j/2}\psi\|^2+m(\psi)^2+\|N^{j/2}\varphi\|^2+m(\varphi)^2)^{1/2} $
. Moreover, we demonstrate that the global attractor is upper semicontinuous at
$ \epsilon = 0 $
in the metric induced by the norm
$ \|.\|_{{\mathcal V}_{j+1}} $
. In addition, the exponential attractors are proven to be Hölder continuous at
$ \epsilon = 0 $
in the metric induced by the norm
$ \|.\|_{{\mathcal V}_{j}} $
. Our results improve a recent work by Bonfoh and Enyi [Comm. Pure Appl. Anal. 2016; 35:1077-1105] where the following additional growth condition
$ |g''(\phi)|\leq {\mathscr C}_7\left(|\phi|^{p}+1\right), $
$ {\mathscr C}_7>0 $
,
$ p>0 $
is arbitrary when
$ d = 1, 2 $
and
$ p\in [0,3] $
when
$ d = 3 $
, was required, preventing
$ g $
to be a polynomial of any arbitrary odd degree with a strictly positive leading coefficient in three space dimension.
Citation: Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3655-3682. doi: 10.3934/cpaa.2021125
References:
[1]

A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Differ. Equ., 7 (1995), 567-589.  doi: 10.1007/BF02218725.  Google Scholar

[2]

A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh and C. D. Enyi, Large time behavior of a conserved phase-field system, Comm. Pure Appl. Anal., 15 (2016), 1077-1105.  doi: 10.3934/cpaa.2016.15.1077.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptotic Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77–85.  Google Scholar

[6]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-568.   Google Scholar

[7]

G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.   Google Scholar

[8]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Differ. Equ., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994.  Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb R^3$, C. R. Math. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[12]

C. M. Elliott and A. M. Stuart, The viscous Cahn-Hilliard equation. Ⅱ. Analysis, J. Differ. Equ., 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[13]

S. GattiM. GrasselliA. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.  doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[14]

S. GattiM. GrasselliA. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.  doi: 10.1142/S0218202505000327.  Google Scholar

[15]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.   Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equ., 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

J. K. Hale and G. Raugel, Lower-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dyn. Differ. Equ., 2 (1990), 19-67.  doi: 10.1007/BF01047769.  Google Scholar

[19]

A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 145-150.  doi: 10.1016/S0764-4442(99)80153-0.  Google Scholar

[20]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.  doi: 10.1016/j.jmaa.2012.11.038.  Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handb. Differ. Equ., 4 (2018), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[22]

G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., 7 (2008), 317-353.  doi: 10.3934/cpaa.2008.7.317.  Google Scholar

[23]

G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sci., 32 (2009), 2368-2404.  doi: 10.1002/mma.1139.  Google Scholar

[24]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics, Oxford Univ. Press, New York, 1988.  Google Scholar

[25]

G. Raugel, Singularly perturbed hyperbolic equations revisited, in International Conference on Differential Equations, World Sci. Publishing, River Edge, NJ, 2000.  Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

show all references

References:
[1]

A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Differ. Equ., 7 (1995), 567-589.  doi: 10.1007/BF02218725.  Google Scholar

[2]

A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Anal., 95 (2016), 44-62.  doi: 10.1080/00036811.2014.997225.  Google Scholar

[3]

A. Bonfoh and C. D. Enyi, Large time behavior of a conserved phase-field system, Comm. Pure Appl. Anal., 15 (2016), 1077-1105.  doi: 10.3934/cpaa.2016.15.1077.  Google Scholar

[4]

A. Bonfoh and C. D. Enyi, The Cahn-Hilliard equation as limit of a conserved phase-field system, Asymptotic Anal., 101 (2017), 97-148.  doi: 10.3233/ASY-161395.  Google Scholar

[5]

D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77–85.  Google Scholar

[6]

D. BrochetD. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-568.   Google Scholar

[7]

G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.   Google Scholar

[8]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Dyn. Differ. Equ., 13 (2001), 791-806.  doi: 10.1023/A:1016676027666.  Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Masson, Paris, 1994.  Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb R^3$, C. R. Math. Acad. Sci. Paris, 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.  doi: 10.1002/mana.200310186.  Google Scholar

[12]

C. M. Elliott and A. M. Stuart, The viscous Cahn-Hilliard equation. Ⅱ. Analysis, J. Differ. Equ., 128 (1996), 387-414.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[13]

S. GattiM. GrasselliA. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.  doi: 10.1090/S0002-9939-05-08340-1.  Google Scholar

[14]

S. GattiM. GrasselliA. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sci., 15 (2005), 165-198.  doi: 10.1142/S0218202505000327.  Google Scholar

[15]

G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.   Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equ., 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

J. K. Hale and G. Raugel, Lower-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dyn. Differ. Equ., 2 (1990), 19-67.  doi: 10.1007/BF01047769.  Google Scholar

[19]

A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 145-150.  doi: 10.1016/S0764-4442(99)80153-0.  Google Scholar

[20]

A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.  doi: 10.1016/j.jmaa.2012.11.038.  Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handb. Differ. Equ., 4 (2018), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[22]

G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., 7 (2008), 317-353.  doi: 10.3934/cpaa.2008.7.317.  Google Scholar

[23]

G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sci., 32 (2009), 2368-2404.  doi: 10.1002/mma.1139.  Google Scholar

[24]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics, Oxford Univ. Press, New York, 1988.  Google Scholar

[25]

G. Raugel, Singularly perturbed hyperbolic equations revisited, in International Conference on Differential Equations, World Sci. Publishing, River Edge, NJ, 2000.  Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[1]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[2]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[3]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[4]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[5]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[6]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[7]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[8]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[9]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[10]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[11]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[12]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[13]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[14]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[15]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[16]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[17]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[18]

Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193

[19]

Mirelson M. Freitas, Anderson J. A. Ramos, Baowei Feng, Mauro L. Santos, Helen C. M. Rodrigues. Existence and continuity of global attractors for ternary mixtures of solids. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021196

[20]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (65)
  • HTML views (181)
  • Cited by (0)

Other articles
by authors

[Back to Top]