-
Previous Article
A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime
- CPAA Home
- This Issue
- Next Article
Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions
Department of Mathematics, Jeonbuk National University, Jeonju 54896, Republic of Korea |
In this paper, we consider the Cauchy problem of $ d $-dimension Hartree type Dirac equation with nonlinearity $ c|x|^{-\gamma} * \langle \psi, \beta \psi\rangle $, where $ c\in \mathbb R\setminus\{0\} $, $ 0 < \gamma < d $($ d = 2,3 $). Our aim is to show the local well-posedness in $ H^s $ for $ s > \frac{\gamma-1}2 $ with mass-supercritical cases($ 1 < \gamma
References:
[1] |
I. Bejenaru and S. Herr,
The cubic Dirac equation: small initial data in $H^1(\mathbb{R}^3)$, Commun. Math. Phys., 335 (2015), 48-82.
doi: 10.1007/s00220-014-2164-0. |
[2] |
N. Bournaveas, T. Candy and S. Machihara,
A note on the Chern-Simons-Dirac equations in the Coulomb gauge, Discrete Contin. Dyn. Syst., 34 (2014), 2693-2701.
doi: 10.3934/dcds.2014.34.2693. |
[3] |
T. Candy and S. Herr,
Transference of bilinear restriction estimates to quadratic variation norms and the Dirac-Klein-Gordon system, Anal. Partial Differ. Equ., 5 (2018), 1171-1240.
doi: 10.2140/apde.2018.11.1171. |
[4] |
T. Candy and S. Herr, Conditional large initial data scattering results for the Dirac-Klein-Gordon system, Forum Math., 6 (2018), 55.
doi: 10.1017/fms. 2018.8. |
[5] |
J. M. Chadam and R. T. Glassey,
On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions, J. Math. Anal. Appl., 53 (1976), 495-597.
doi: 10.1016/0022-247X(76)90087-1. |
[6] |
Y. Cho, K. Lee and T. Ozawa, Small data scattering of 2d Hartree type Dirac equations, preprint. |
[7] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[8] |
Y. Cho and T. Ozawa,
On radial solutions of semi-relativistic Hartree equations, Discrete Contin. Dyn. Syst., 1 (2008), 71-82.
doi: 10.3934/dcdss.2008.1.71. |
[9] |
P. D'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Euro. Math. Soc., 9 (2007), 877-899.
doi: 10.4171/JEMS/100. |
[10] |
S. Herr and E. Lenzmann,
The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.
doi: 10.1016/j.na.2013.11.023. |
[11] |
H. Huh and S. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Commun. Partial Differ. Equ., 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[12] |
S. Machihara and K. Tsutaya,
Scattering theory for the Dirac equation with a non-local term, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 139 (2009), 867-878.
doi: 10.1017/S0308210507000479. |
[13] |
L. Molinet, Je an-Claude Saut and N. Tzvetkov,
Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[14] |
F. Pusateri,
Modified scattering for the boson star equation, Commun. Math. Phys., 332 (2014), 1203-1234.
doi: 10.1007/s00220-014-2094-x. |
[15] |
S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation, Int. Math. Res. Not., 9 (2008), rnn 107.
doi: 10.1093/imrn/rnn107. |
[16] |
S. Selberg,
Bilinear Fourier restriction estimates related to the $2$D wave equation, Adv. Differ. Equ., 16 (2011), 667-690.
|
[17] |
A. Tesfahun,
Long-time behavior of solutions to cubic Dirac equation with Hartree type nonlinearity in $\mathbb{R}^{1+2}$, Int. Math. Res. Not., 19 (2020), 6489-6538.
doi: 10.1093/imrn/rny217. |
[18] |
X. Wang,
On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not., 21 (2015), 10801-10846.
doi: 10.1093/imrn/rnv010. |
[19] |
C. Yang,
Scattering results for Dirac Hartree-type equations with small initial data, Commun. Pure. Appl. Anal., 18 (2019), 1711-1734.
doi: 10.3934/cpaa.2019081. |
show all references
References:
[1] |
I. Bejenaru and S. Herr,
The cubic Dirac equation: small initial data in $H^1(\mathbb{R}^3)$, Commun. Math. Phys., 335 (2015), 48-82.
doi: 10.1007/s00220-014-2164-0. |
[2] |
N. Bournaveas, T. Candy and S. Machihara,
A note on the Chern-Simons-Dirac equations in the Coulomb gauge, Discrete Contin. Dyn. Syst., 34 (2014), 2693-2701.
doi: 10.3934/dcds.2014.34.2693. |
[3] |
T. Candy and S. Herr,
Transference of bilinear restriction estimates to quadratic variation norms and the Dirac-Klein-Gordon system, Anal. Partial Differ. Equ., 5 (2018), 1171-1240.
doi: 10.2140/apde.2018.11.1171. |
[4] |
T. Candy and S. Herr, Conditional large initial data scattering results for the Dirac-Klein-Gordon system, Forum Math., 6 (2018), 55.
doi: 10.1017/fms. 2018.8. |
[5] |
J. M. Chadam and R. T. Glassey,
On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions, J. Math. Anal. Appl., 53 (1976), 495-597.
doi: 10.1016/0022-247X(76)90087-1. |
[6] |
Y. Cho, K. Lee and T. Ozawa, Small data scattering of 2d Hartree type Dirac equations, preprint. |
[7] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[8] |
Y. Cho and T. Ozawa,
On radial solutions of semi-relativistic Hartree equations, Discrete Contin. Dyn. Syst., 1 (2008), 71-82.
doi: 10.3934/dcdss.2008.1.71. |
[9] |
P. D'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Euro. Math. Soc., 9 (2007), 877-899.
doi: 10.4171/JEMS/100. |
[10] |
S. Herr and E. Lenzmann,
The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.
doi: 10.1016/j.na.2013.11.023. |
[11] |
H. Huh and S. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Commun. Partial Differ. Equ., 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[12] |
S. Machihara and K. Tsutaya,
Scattering theory for the Dirac equation with a non-local term, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 139 (2009), 867-878.
doi: 10.1017/S0308210507000479. |
[13] |
L. Molinet, Je an-Claude Saut and N. Tzvetkov,
Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[14] |
F. Pusateri,
Modified scattering for the boson star equation, Commun. Math. Phys., 332 (2014), 1203-1234.
doi: 10.1007/s00220-014-2094-x. |
[15] |
S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation, Int. Math. Res. Not., 9 (2008), rnn 107.
doi: 10.1093/imrn/rnn107. |
[16] |
S. Selberg,
Bilinear Fourier restriction estimates related to the $2$D wave equation, Adv. Differ. Equ., 16 (2011), 667-690.
|
[17] |
A. Tesfahun,
Long-time behavior of solutions to cubic Dirac equation with Hartree type nonlinearity in $\mathbb{R}^{1+2}$, Int. Math. Res. Not., 19 (2020), 6489-6538.
doi: 10.1093/imrn/rny217. |
[18] |
X. Wang,
On global existence of 3D charge critical Dirac-Klein-Gordon system, Int. Math. Res. Not., 21 (2015), 10801-10846.
doi: 10.1093/imrn/rnv010. |
[19] |
C. Yang,
Scattering results for Dirac Hartree-type equations with small initial data, Commun. Pure. Appl. Anal., 18 (2019), 1711-1734.
doi: 10.3934/cpaa.2019081. |
Author(s) | Equations | dimension | ||
Cho–Ozawa(2006, [7]) | S-R | LWP for |
||
Cho–Ozawa (2008, [8]) | S-R | GWP for |
||
Machihara–Tsutaya (2009, [12]) | Dirac | LWP for |
||
Pusateri (2014, [14]) | S-R | Modified scattering | ||
Bournaveas–Candy–Machihara (2014, [2]) | CSD | LWP for |
||
Herr–Lenzmann (2014, [10]) | S-R | LWP for |
||
Cho–Lee–Ozawa (2020, [6]) | Dirac | GWP for |
Author(s) | Equations | dimension | ||
Cho–Ozawa(2006, [7]) | S-R | LWP for |
||
Cho–Ozawa (2008, [8]) | S-R | GWP for |
||
Machihara–Tsutaya (2009, [12]) | Dirac | LWP for |
||
Pusateri (2014, [14]) | S-R | Modified scattering | ||
Bournaveas–Candy–Machihara (2014, [2]) | CSD | LWP for |
||
Herr–Lenzmann (2014, [10]) | S-R | LWP for |
||
Cho–Lee–Ozawa (2020, [6]) | Dirac | GWP for |
[1] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[2] |
Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737 |
[3] |
Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008 |
[4] |
Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819 |
[5] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[6] |
Márcio Cavalcante, Chulkwang Kwak. Local well-posedness of the fifth-order KdV-type equations on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2607-2661. doi: 10.3934/cpaa.2019117 |
[7] |
Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605 |
[8] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[9] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[10] |
Thomas Chaub. Local well-posedness for a class of singular Vlasov equations. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022027 |
[11] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[12] |
Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 |
[13] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[14] |
Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206 |
[15] |
Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087 |
[16] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[17] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[18] |
Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203 |
[19] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[20] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]