\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime

  • * Corresponding author

    * Corresponding author
The third author is supported by the GNAMPA project 'Problemi stazionari e di evoluzione nelle equazioni di campo nonlineari dispersive'
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we establish blow-up results for the semilinear wave equation in generalized Einstein-de Sitter spacetime with nonlinearity of derivative type. Our approach is based on the integral representation formula for the solution to the corresponding linear problem in the one-dimensional case, that we will determine through Yagdjian's Integral Transform approach. As upper bound for the exponent of the nonlinear term, we discover a Glassey-type exponent which depends both on the space dimension and on the Lorentzian metric in the generalized Einstein-de Sitter spacetime.

    Mathematics Subject Classification: Primary: 35B44, 35C15, 35L71; Secondary: 35A08, 35B33, 35L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. D'Abbicco, Small data solutions for the Euler-Poisson-Darboux equation with a power nonlinearity, J. Differ. Equ., 286 (2021), 531-556.  doi: 10.1016/j.jde.2021.03.033.
    [2] A. Galstian, T. Kinoshita and K. Yagdjian, A note on wave equation in Einstein and de Sitter space-time, J. Math. Phys., 51 (2010), 052501. doi: 10.1063/1.3387249.
    [3] A. Galstian and K. Yagdjian, Finite lifespan of solutions of the semilinear wave equation in the Einstein-de Sitter spacetime, Rev. Math. Phys., 32 (2020), 2050018. doi: 10.1142/S0129055X2050018X.
    [4] M. Hamouda and M. A. Hamza, Blow-up for wave equation with the scale-invariant damping and combined nonlinearities, Math. Methods Appl. Sci., 44 (2021) 1127-1136. doi: 10.1002/mma. 6817.
    [5] M. Hamouda and M. A. Hamza, Improvement on the blow-up of the wave equation with the scale-invariant damping and combined nonlinearities, Nonlinear Anal. Real World Appl., 59 (2021), 103275. doi: 10.1016/j. nonrwa. 2020.103275.
    [6] M. Hamouda and M. A. Hamza, Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities, preprint, arXiv: 2011.04895.
    [7] M. Hamouda, M. A. Hamza and A. Palmieri, Blow-up and lifespan estimates for a damped wave equation in the Einstein-de Sitter spacetime with nonlinearity of derivative type, arXiv: 2102.01137.
    [8] K. HidanoC. Wang and K. Yokoyama, The Glassey conjecture with radially symmetric data, J. Math. Pures Appl., 98 (2012), 518-541.  doi: 10.1016/j.matpur.2012.01.007.
    [9] N. A. Lai and N. M. Schiavone, Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture, preprint, arXiv: 2007.16003v2.
    [10] S. Lucente and A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Milan J. Math., 89 (2021), 45-57.  doi: 10.1007/s00032-021-00326-x.
    [11] W. Nunes do NascimentoA. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017), 1779-1805.  doi: 10.1002/mana.201600069.
    [12] F. W. J. OlverD. W. LozierR. F. Boisvert and  C. W. ClarkNIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. 
    [13] A. Palmieri, Integral representation formulae for the solution of a wave equation with time-dependent damping and mass in the scale-invariant case, Math. Methods Appl. Sci., (2021), 1-32. doi: 10.1002/mma. 7603.
    [14] A. Palmieri, Lifespan estimates for local solutions to the semilinear wave equation in Einstein-de Sitter spacetime, preprint, arXiv: 2009.04388.
    [15] A. Palmieri, Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime, Z. Angew. Math. Phys., 72 (2021), 64. doi: 10.1007/s00033-021-01494-x.
    [16] A. Palmieri and M. Reissig, A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass, J. Differ. Equ., 266 (2019), 1176-1220.  doi: 10.1016/j.jde.2018.07.061.
    [17] A. Palmieri and Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl., 470 (2019), 447-469.  doi: 10.1016/j.jmaa.2018.10.015.
    [18] A. Palmieri and Z. Tu, A blow-up result for a semilinear wave equation with scale-invariant damping and mass and nonlinearity of derivative type, Calc. Var. Partial Differ. Equ. 60 (2021), 72. doi: 10.1007/s00526-021-01948-0.
    [19] K. Tsutaya and Y. Wakasugi, Blow up of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime, J. Math. Phys., 61 (2020), 091503. doi: 10.1063/1.5139301.
    [20] K. Tsutaya and Y. Wakasugi, On heatlike lifespan of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime, J. Math. Anal. Appl., 500 (2021), 125133. doi: 10.1016/j. jmaa. 2021.125133.
    [21] N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22 (1998), 193-211.  doi: 10.21099/tkbjm/1496163480.
    [22] K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differ. Equ., 206 (2004), 227-252.  doi: 10.1016/j.jde.2004.07.028.
    [23] K. Yagdjian, The self-similar solutions of the Tricomi-type equations, Z. Angew. Math. Phys., 58 (2007), 612-645.  doi: 10.1007/s00033-006-5099-2.
    [24] K. Yagdjian, Fundamental solutions for hyperbolic operators with variable coefficients, Rend. Istit. Mat. Univ. Trieste, 42 (2010), 221-243. 
    [25] K. Yagdjian, Integral transform approach to generalized Tricomi equations, J. Differ. Equ., 259 (2015), 5927-5981.  doi: 10.1016/j.jde.2015.07.014.
    [26] K. Yagdjian, Fundamental solutions of the Dirac operator in the Friedmann-Lemaître-Robertson-Walker spacetime, Ann. Phys., 421 (2020), 168266. doi: 10.1016/j. aop. 2020.168266.
    [27] K. Yagdjian and A. Galstian, Fundamental solutions of the wave equation in Robertson-Walker spaces, J. Math. Anal. Appl., 346 (2008), 501-520.  doi: 10.1016/j.jmaa.2008.05.075.
    [28] K. Yagdjian and A. Galstian, Fundamental Solutions for the Klein-Gordon Equation in de Sitter Spacetime, Commun. Math. Phys., 285 (2009), 293-344.  doi: 10.1007/s00220-008-0649-4.
    [29] Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations, Chin. Ann. Math. Ser. B, 22 (2001), 275-280.  doi: 10.1142/S0252959901000280.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(974) PDF downloads(205) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return