doi: 10.3934/cpaa.2021128
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

* Corresponding author

Received  November 2020 Revised  June 2021 Early access July 2021

Fund Project: The second author is supported by the National Natural Science Foundation of China (Grant Nos. 11701239 and 11871253)

We are concerned with the following nonlinear fractional Schrödinger equation:
$\begin{equation} (-\Delta)^s u+V(x)u+\omega u = |u|^{p-2}u\quad {\rm{in}}\,\,{\mathbb{R}}^N,\;\;\;\;\;\;({\textbf{P}})\end{equation}$
where
$ s\in(0,1) $
and
$ p\in\left(2+4s/N,2^*_s\right) $
, that is, the mass supercritical and Sobolev subcritical. Under certain assumptions on the potential
$ V:{\mathbb{R}}^N\rightarrow {\mathbb{R}} $
, positive and vanishing at infinity including potentials with singularities (which is important for physical reasons), we prove that there exists at least one
$ L^2 $
-normalized solution
$ (u,\omega)\in H^s({\mathbb{R}}^N)\times{\mathbb{R}}^+ $
of equation (P). In order to overcome the lack of compactness, the proof is based on a new min-max argument and splitting lemma for nonlocal version.
Citation: Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021128
References:
[1]

T. BartschL. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on ${\mathbb{R}}^3$, J. Math. Pures Appl., 9 (2016), 583-614.  doi: 10.1016/j.matpur.2016.03.004.  Google Scholar

[2]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, Commun. Partial Differ. Equ., (2021), 28pp. doi: https://doi.org/10.1080/03605302.2021.1893747.  Google Scholar

[3]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.  Google Scholar

[4]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.  Google Scholar

[5]

D. BonheureJ. B. CasterasT. Gou and L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167-2212.  doi: 10.1090/tran/7769.  Google Scholar

[6]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

J. A. Cardoso, D. S. dos Prazeres and U. B. Severo, Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents, Z. Angew. Math. Phys., 71 (2020), 14pp. doi: 10.1007/s00033-020-01354-0.  Google Scholar

[9]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.  Google Scholar

[10]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 7pp. doi: 10.1063/1.3701574.  Google Scholar

[11] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC press, 2004.   Google Scholar
[12]

J. Correia and G. Figueiredo, Existence of positive solution for a fractional elliptic equation in exterior domain, J. Differ. Equ., 268 (2020), 1946-1973.  doi: 10.1016/j.jde.2019.09.024.  Google Scholar

[13]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[14]

J. DávilaM. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equ., 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. des Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

M. DuL. TianJ. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 617-653.  doi: 10.1017/prm.2018.41.  Google Scholar

[17]

P. FelmerA. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[18]

B. Feng, J. Ren and Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the $L^2$-supercritical case, J. Math. Phys., 61 (2020), 19pp. doi: 10.1063/5.0006247.  Google Scholar

[19]

R. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[20] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993.  doi: 10.1017/CBO9780511551703.  Google Scholar
[21]

Y. GuoZ. Q. WangX. Zeng and H. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.  doi: 10.1088/1361-6544/aa99a8.  Google Scholar

[22]

X. He and W. Zou, Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth, Sci. China Math., 63 (2020), 1571-1612.  doi: 10.1007/s11425-020-1692-1.  Google Scholar

[23]

X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differ. Equ., 55 (2016), 39pp. doi: 10.1007/s00526-016-1045-0.  Google Scholar

[24]

N. Ikoma and Y. Miyamoto, Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differ. Equ., 48 (2020), 20pp. doi: 10.1007/s00526-020-1703-0.  Google Scholar

[25]

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.  Google Scholar

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 3 (2002), 7pp. doi: 10.1103/PhysRevE. 66.056108.  Google Scholar

[28]

H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differ. Equ., 59 (2020), 35pp. doi: 10.1007/s00526-020-01814-5.  Google Scholar

[29]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in ${\mathbb{R}}^N$, J. Math. Phys., 54 (2013), 17pp. doi: 10.1063/1.4793990.  Google Scholar

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[31]

X. Shang and J. Zhang, Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 17 (2018), 2239-2259.  doi: 10.3934/cpaa.2018107.  Google Scholar

[32]

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 43pp. doi: 10.1016/j. jfa. 2020.108610.  Google Scholar

[33]

A. Xia and J. Yang, Normalized solutions of higher-order Schrödinger equations, Discrete Contin. Dyn. Syst., 39 (2019), 447-462.  doi: 10.3934/dcds.2019018.  Google Scholar

[34]

J. Yang and J. Yang, On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 3187-3215.  doi: 10.1017/prm.2019.66.  Google Scholar

show all references

References:
[1]

T. BartschL. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on ${\mathbb{R}}^3$, J. Math. Pures Appl., 9 (2016), 583-614.  doi: 10.1016/j.matpur.2016.03.004.  Google Scholar

[2]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, Commun. Partial Differ. Equ., (2021), 28pp. doi: https://doi.org/10.1080/03605302.2021.1893747.  Google Scholar

[3]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.  Google Scholar

[4]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.  Google Scholar

[5]

D. BonheureJ. B. CasterasT. Gou and L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167-2212.  doi: 10.1090/tran/7769.  Google Scholar

[6]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

J. A. Cardoso, D. S. dos Prazeres and U. B. Severo, Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents, Z. Angew. Math. Phys., 71 (2020), 14pp. doi: 10.1007/s00033-020-01354-0.  Google Scholar

[9]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.  Google Scholar

[10]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 7pp. doi: 10.1063/1.3701574.  Google Scholar

[11] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC press, 2004.   Google Scholar
[12]

J. Correia and G. Figueiredo, Existence of positive solution for a fractional elliptic equation in exterior domain, J. Differ. Equ., 268 (2020), 1946-1973.  doi: 10.1016/j.jde.2019.09.024.  Google Scholar

[13]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[14]

J. DávilaM. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equ., 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. des Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

M. DuL. TianJ. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 617-653.  doi: 10.1017/prm.2018.41.  Google Scholar

[17]

P. FelmerA. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[18]

B. Feng, J. Ren and Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the $L^2$-supercritical case, J. Math. Phys., 61 (2020), 19pp. doi: 10.1063/5.0006247.  Google Scholar

[19]

R. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[20] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993.  doi: 10.1017/CBO9780511551703.  Google Scholar
[21]

Y. GuoZ. Q. WangX. Zeng and H. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.  doi: 10.1088/1361-6544/aa99a8.  Google Scholar

[22]

X. He and W. Zou, Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth, Sci. China Math., 63 (2020), 1571-1612.  doi: 10.1007/s11425-020-1692-1.  Google Scholar

[23]

X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differ. Equ., 55 (2016), 39pp. doi: 10.1007/s00526-016-1045-0.  Google Scholar

[24]

N. Ikoma and Y. Miyamoto, Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differ. Equ., 48 (2020), 20pp. doi: 10.1007/s00526-020-1703-0.  Google Scholar

[25]

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.  Google Scholar

[26]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[27]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 3 (2002), 7pp. doi: 10.1103/PhysRevE. 66.056108.  Google Scholar

[28]

H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differ. Equ., 59 (2020), 35pp. doi: 10.1007/s00526-020-01814-5.  Google Scholar

[29]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in ${\mathbb{R}}^N$, J. Math. Phys., 54 (2013), 17pp. doi: 10.1063/1.4793990.  Google Scholar

[30]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[31]

X. Shang and J. Zhang, Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 17 (2018), 2239-2259.  doi: 10.3934/cpaa.2018107.  Google Scholar

[32]

N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 43pp. doi: 10.1016/j. jfa. 2020.108610.  Google Scholar

[33]

A. Xia and J. Yang, Normalized solutions of higher-order Schrödinger equations, Discrete Contin. Dyn. Syst., 39 (2019), 447-462.  doi: 10.3934/dcds.2019018.  Google Scholar

[34]

J. Yang and J. Yang, On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 3187-3215.  doi: 10.1017/prm.2019.66.  Google Scholar

[1]

José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

[2]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[3]

Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019

[4]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[5]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[6]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, , () : -. doi: 10.3934/era.2021047

[7]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[8]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[9]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[10]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3331-3355. doi: 10.3934/cpaa.2021108

[11]

Chuangye Liu, Rushun Tian. Normalized solutions for 3-coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5115-5130. doi: 10.3934/cpaa.2020229

[12]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[13]

Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018

[14]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[15]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[18]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[19]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[20]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (120)
  • HTML views (177)
  • Cited by (0)

Other articles
by authors

[Back to Top]