doi: 10.3934/cpaa.2021129
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects

1. 

Faculty of Mathematics, Federal University of Pará, Raimundo Santana Street, S/N, 68721-000, Salinópolis, PA, Brazil

2. 

Faculty of Exact Sciences and Technology, Federal University of Pará, Manoel de Abre Street, S/N, 68440-000, Abaetetuba, PA, Brazil

* Corresponding author

Received  March 2021 Revised  June 2021 Early access July 2021

Fund Project: A. J. A. Ramos is supported by Grant 310729/2019-0

This paper is concerned with the study of the pullback dynamics of a piezoelectric system with magnetic and thermal effects and subjected to small perturbations of non-autonomous external forces with a parameter $ \epsilon $. The existence of pullback exponential attractors and the existence of pullback attractors for the associated non-autonomous dynamical system are proved. Finally, the upper-semicontinuity of pullback attractors as $ \epsilon\to0 $ is shown.

Citation: Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Eraldo R. N. Fonseca. Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021129
References:
[1]

A. N. Carvalho, J. A. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer-Verlag, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[2]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[3]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[4]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.  Google Scholar

[5]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations Part I: semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[6]

R. Czaja and P. Mar'in-Rubio, Pullback exponential attractors for parabolic equations with dynamical boundary conditions, Taiwan. J. Math., 21 (2017), 819-839.  doi: 10.11650/tjm/7862.  Google Scholar

[7]

C. DagdevirenP. JoeO. L. TuzmanK. ParkK. J. LeeY ShiY. Huang and J. A. Rogers, Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mechanics Letters, 9 (2016), 269-281.   Google Scholar

[8]

M. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Royal Soc. Edinburg A., 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[9]

M. M. FreitasA. J. A. RamosA. Ö. Özer and D. S. Almeida Júnior, Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law, J. Differ. Equ., 280 (2021), 891-927.  doi: 10.1016/j.jde.2021.01.030.  Google Scholar

[10]

A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps, Portugaliae mathematica, 46 (1989), 245-258.   Google Scholar

[11]

I.R. Henderson, Piezoelectric Ceramics: Principles and Applications, APC International, Pennsylvania, USA, 2002. Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Soc, Vol. 176, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discret. Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[14]

T. F. MaR. N. Monteiro and A. C. Pereira, Pullback Dynamics of Non-autonomous Timoshenko Systems, Appl. Math. Optim., 80 (2019), 391-413.  doi: 10.1007/s00245-017-9469-2.  Google Scholar

[15]

J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Philos. Trans. R. Soc.Lond., 1865.  Google Scholar

[16] J. C. Maxwell, A Treatise on Electricity and Magnetism, Cambridge University Press, 2009.   Google Scholar
[17]

K. Morris and A. Ö. Özer, Strong Stabilization of Piezoelectric Beams with Magnetic Effects, 52nd IEEE Conference on Decision and Control, 2013. Google Scholar

[18]

K. A. Morris and A. Ö. Özer, Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects, SIAM J. Contr. Optim., 52 (2014), 2371–2398. doi: 10.1137/130918319.  Google Scholar

[19]

A. Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects, Mathematics of Control, Signals, and Systems, 27 (2015), 219-244.  doi: 10.1007/s00498-015-0139-0.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

A. J. A. Ramos, C. S. L. Gonçalves and S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255–274. doi: 10.1051/m2an/2018004.  Google Scholar

[22]

A. J. A. Ramos, M. M. Freitas, D. S. Almeida, S. S. Jesus and T. R. S. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Zeitschrift fü angewandte Mathematik und Physik, 70 (2019), 14pp. doi: 10.1007/s00033-019-1106-2.  Google Scholar

[23]

A. J. A. Ramos, A. Ö. Özer, M. M. Freitas, D. S. Almeida and J. D. Martins, Exponential stabilitization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Zeitschrift für angewandte Mathematik und Physik, 72 (2021), 15pp. doi: 10.1007/s00033-020-01457-8.  Google Scholar

[24]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Adv. Comput. Math., 26 (2006), 337-365.  doi: 10.1007/s10444-004-7629-9.  Google Scholar

show all references

References:
[1]

A. N. Carvalho, J. A. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer-Verlag, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[2]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[3]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[4]

R. Czaja, Pullback exponential attractors with admissible exponential growth in the past, Nonlinear Anal., 104 (2014), 90-108.  doi: 10.1016/j.na.2014.03.020.  Google Scholar

[5]

R. Czaja and M. Efendiev, Pullback exponential attractors for nonautonomous equations Part I: semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[6]

R. Czaja and P. Mar'in-Rubio, Pullback exponential attractors for parabolic equations with dynamical boundary conditions, Taiwan. J. Math., 21 (2017), 819-839.  doi: 10.11650/tjm/7862.  Google Scholar

[7]

C. DagdevirenP. JoeO. L. TuzmanK. ParkK. J. LeeY ShiY. Huang and J. A. Rogers, Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mechanics Letters, 9 (2016), 269-281.   Google Scholar

[8]

M. EfendievA. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Royal Soc. Edinburg A., 135 (2005), 703-730.  doi: 10.1017/S030821050000408X.  Google Scholar

[9]

M. M. FreitasA. J. A. RamosA. Ö. Özer and D. S. Almeida Júnior, Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law, J. Differ. Equ., 280 (2021), 891-927.  doi: 10.1016/j.jde.2021.01.030.  Google Scholar

[10]

A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps, Portugaliae mathematica, 46 (1989), 245-258.   Google Scholar

[11]

I.R. Henderson, Piezoelectric Ceramics: Principles and Applications, APC International, Pennsylvania, USA, 2002. Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Soc, Vol. 176, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discret. Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[14]

T. F. MaR. N. Monteiro and A. C. Pereira, Pullback Dynamics of Non-autonomous Timoshenko Systems, Appl. Math. Optim., 80 (2019), 391-413.  doi: 10.1007/s00245-017-9469-2.  Google Scholar

[15]

J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Philos. Trans. R. Soc.Lond., 1865.  Google Scholar

[16] J. C. Maxwell, A Treatise on Electricity and Magnetism, Cambridge University Press, 2009.   Google Scholar
[17]

K. Morris and A. Ö. Özer, Strong Stabilization of Piezoelectric Beams with Magnetic Effects, 52nd IEEE Conference on Decision and Control, 2013. Google Scholar

[18]

K. A. Morris and A. Ö. Özer, Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects, SIAM J. Contr. Optim., 52 (2014), 2371–2398. doi: 10.1137/130918319.  Google Scholar

[19]

A. Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects, Mathematics of Control, Signals, and Systems, 27 (2015), 219-244.  doi: 10.1007/s00498-015-0139-0.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

A. J. A. Ramos, C. S. L. Gonçalves and S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255–274. doi: 10.1051/m2an/2018004.  Google Scholar

[22]

A. J. A. Ramos, M. M. Freitas, D. S. Almeida, S. S. Jesus and T. R. S. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Zeitschrift fü angewandte Mathematik und Physik, 70 (2019), 14pp. doi: 10.1007/s00033-019-1106-2.  Google Scholar

[23]

A. J. A. Ramos, A. Ö. Özer, M. M. Freitas, D. S. Almeida and J. D. Martins, Exponential stabilitization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Zeitschrift für angewandte Mathematik und Physik, 72 (2021), 15pp. doi: 10.1007/s00033-020-01457-8.  Google Scholar

[24]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Adv. Comput. Math., 26 (2006), 337-365.  doi: 10.1007/s10444-004-7629-9.  Google Scholar

[1]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[2]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[3]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[4]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[5]

José A. Langa, Alain Miranville, José Real. Pullback exponential attractors. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1329-1357. doi: 10.3934/dcds.2010.26.1329

[6]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[7]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[8]

Wenlong Sun. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28 (3) : 1343-1356. doi: 10.3934/era.2020071

[9]

Na Lei, Shengfan Zhou. Upper semicontinuity of pullback attractors for non-autonomous lattice systems under singular perturbations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021108

[10]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[11]

Mohamed Ali Hammami, Lassaad Mchiri, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 301-319. doi: 10.3934/dcdsb.2019183

[12]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3047-3071. doi: 10.3934/cpaa.2013.12.3047

[13]

Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1141-1165. doi: 10.3934/cpaa.2014.13.1141

[14]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[15]

Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749

[16]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[17]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[18]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[19]

Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277

[20]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (87)
  • HTML views (156)
  • Cited by (0)

[Back to Top]