-
Previous Article
Bounds for subcritical best Sobolev constants in W1, p
- CPAA Home
- This Issue
-
Next Article
Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production
Liouville-type theorem for higher-order Hardy-Hénon system
1. | School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, China |
2. | School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China |
3. | HLM, Academy of Mathematics and Systems Science of Sciences, Chinese Academy of Sciences, Beijing 100190, China |
4. | School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
In this paper, we study higher-order Hardy-Hénon elliptic systems with weights. We first prove a new theorem on regularities of the positive solutions at the origin, then study equivalence between the higher-order Hardy-Hénon elliptic system and a proper integral system, and we obtain a new and interesting Liouville-type theorem by methods of moving planes and moving spheres for integral system. We also use this Liouville-type theorem to prove the Hénon-Lane-Emden conjecture for polyharmonic system under some conditions.
References:
[1] |
F. Arthur and X. Yan,
A Liouville-type theorem for higher order elliptic systems of Hénon-Lane-Emden type, Commun. Pure Appl. Anal., 15 (2016), 807-830.
doi: 10.3934/cpaa.2016.15.807. |
[2] |
M. F. Bidaut-Véron and H. Giacomini,
A new dynamical approach of Emden-Fowler equations and systems, Adv. Differ. Equ., 15 (2010), 1033-1082.
doi: 10.1016/j.bpj.2008.12.3431. |
[3] |
I. Birindelli and E. Mitidieri,
Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.
doi: 10.1017/S0308210500027293. |
[4] |
J. Busca and R. Manásevich,
A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J., 51 (2002), 37-51.
doi: 10.1512/iumj.2002.51.2160. |
[5] |
W. Chen and C. Li,
An integral system and the Lane-Emdem conjecture, Discret. Contin. Dyn. Syst., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[6] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[7] |
W. Chen, C. Li, Chen and B. Ou,
Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[8] |
W. Chen, C. Li, Chen and B. Ou,
Classification of solutions for a system of integral equations, Commun. Partial Differ. Equ., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[9] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Singapore, 2020. |
[10] |
D. G. de Figueiredo and P. Felmer,
A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994), 387-397.
doi: 10.1007/978-3-319-02856-9_27. |
[11] |
L. Dupaigne and A. C. Ponce,
Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), 10 (2004), 341-358.
doi: 10.1007/s00029-004-0390-6. |
[12] |
M. Fazly,
Liouville theorems for the polyharmonic Hénon-Lane-Emden system, Methods Appl. Anal., 21 (2014), 265-281.
doi: 10.1007/s00029-004-0390-6. |
[13] |
M. Fazly and N. Ghoussoub,
On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533.
doi: 10.3934/dcds.2014.34.2513. |
[14] |
J. Garcia-Melian, Nonexistence of positive solutions for Hénon equation, preprint, arXiv: 1703.04353. |
[15] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[17] |
Z. Guo and F. Wan,
Further study of a weighted elliptic equation, Sci. China Math., 60 (2017), 2391-2406.
doi: 10.1007/s11425-017-9134-7. |
[18] |
K. Li and Z. T. Zhang,
Proof of the Hénon-Lane-Emden conjecture in $\mathbb{R}^3$, J. Differ. Equ., 266 (2019), 202-226.
doi: 10.1016/j.jde.2018.07.036. |
[19] |
K. Li and Z. T. Zhang,
Monotonicity theorem and its applications to weighted elliptic equations, Sci. China Math., 62 (2019), 1925-1934.
doi: 10.1007/s11425-018-9414-8. |
[20] |
E. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. |
[21] |
J. Liu, Y. Guo and Y. Zhang,
Liouville-type theorems for polyharmonic systems in $\mathbb{R}^N$, J. Differ. Equ., 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[22] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[23] |
E. Mitidieri and S.I. Pokhozhaev,
A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001), 1-362.
|
[24] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[25] |
Q. H. Phan,
Liouville-type theorems for polyharmonic Hénon-Lane-Emden system, Adv. Nonlinear Stud., 15 (2015), 415-432.
doi: 10.1515/ans-2015-0208. |
[26] |
Q. H. Phan and P. Souplet,
Liouville-type theorems and bounds of solutions of Hardy-Hénon equations, J. Differ. Equ., 252 (2012), 2544-2562.
doi: 10.1016/j.jde.2011.09.022. |
[27] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts, Springer, Berlin, 2007. |
[28] |
W. Reichel and H. Zou,
Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differ. Equ., 161 (2000), 219-243.
doi: 10.1006/jdeq.1999.3700. |
[29] |
J. Serrin and H. Zou,
Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equ., 9 (1996), 635-653.
doi: 10.1007/BF01254345. |
[30] |
P. Souplet,
The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[31] |
J. Villavert,
Sharp existence criteria for positive solutions of Hardy-Sobolev type systems, Commun. Pure Appl. Anal., 14 (2015), 493-515.
doi: 10.3934/cpaa.2015.14.493. |
[32] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[33] |
X. Yu,
Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differ. Equ., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
show all references
References:
[1] |
F. Arthur and X. Yan,
A Liouville-type theorem for higher order elliptic systems of Hénon-Lane-Emden type, Commun. Pure Appl. Anal., 15 (2016), 807-830.
doi: 10.3934/cpaa.2016.15.807. |
[2] |
M. F. Bidaut-Véron and H. Giacomini,
A new dynamical approach of Emden-Fowler equations and systems, Adv. Differ. Equ., 15 (2010), 1033-1082.
doi: 10.1016/j.bpj.2008.12.3431. |
[3] |
I. Birindelli and E. Mitidieri,
Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.
doi: 10.1017/S0308210500027293. |
[4] |
J. Busca and R. Manásevich,
A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J., 51 (2002), 37-51.
doi: 10.1512/iumj.2002.51.2160. |
[5] |
W. Chen and C. Li,
An integral system and the Lane-Emdem conjecture, Discret. Contin. Dyn. Syst., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[6] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[7] |
W. Chen, C. Li, Chen and B. Ou,
Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[8] |
W. Chen, C. Li, Chen and B. Ou,
Classification of solutions for a system of integral equations, Commun. Partial Differ. Equ., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[9] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Singapore, 2020. |
[10] |
D. G. de Figueiredo and P. Felmer,
A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994), 387-397.
doi: 10.1007/978-3-319-02856-9_27. |
[11] |
L. Dupaigne and A. C. Ponce,
Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), 10 (2004), 341-358.
doi: 10.1007/s00029-004-0390-6. |
[12] |
M. Fazly,
Liouville theorems for the polyharmonic Hénon-Lane-Emden system, Methods Appl. Anal., 21 (2014), 265-281.
doi: 10.1007/s00029-004-0390-6. |
[13] |
M. Fazly and N. Ghoussoub,
On the Hénon-Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 34 (2014), 2513-2533.
doi: 10.3934/dcds.2014.34.2513. |
[14] |
J. Garcia-Melian, Nonexistence of positive solutions for Hénon equation, preprint, arXiv: 1703.04353. |
[15] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[17] |
Z. Guo and F. Wan,
Further study of a weighted elliptic equation, Sci. China Math., 60 (2017), 2391-2406.
doi: 10.1007/s11425-017-9134-7. |
[18] |
K. Li and Z. T. Zhang,
Proof of the Hénon-Lane-Emden conjecture in $\mathbb{R}^3$, J. Differ. Equ., 266 (2019), 202-226.
doi: 10.1016/j.jde.2018.07.036. |
[19] |
K. Li and Z. T. Zhang,
Monotonicity theorem and its applications to weighted elliptic equations, Sci. China Math., 62 (2019), 1925-1934.
doi: 10.1007/s11425-018-9414-8. |
[20] |
E. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. |
[21] |
J. Liu, Y. Guo and Y. Zhang,
Liouville-type theorems for polyharmonic systems in $\mathbb{R}^N$, J. Differ. Equ., 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[22] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[23] |
E. Mitidieri and S.I. Pokhozhaev,
A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001), 1-362.
|
[24] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[25] |
Q. H. Phan,
Liouville-type theorems for polyharmonic Hénon-Lane-Emden system, Adv. Nonlinear Stud., 15 (2015), 415-432.
doi: 10.1515/ans-2015-0208. |
[26] |
Q. H. Phan and P. Souplet,
Liouville-type theorems and bounds of solutions of Hardy-Hénon equations, J. Differ. Equ., 252 (2012), 2544-2562.
doi: 10.1016/j.jde.2011.09.022. |
[27] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts, Springer, Berlin, 2007. |
[28] |
W. Reichel and H. Zou,
Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differ. Equ., 161 (2000), 219-243.
doi: 10.1006/jdeq.1999.3700. |
[29] |
J. Serrin and H. Zou,
Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equ., 9 (1996), 635-653.
doi: 10.1007/BF01254345. |
[30] |
P. Souplet,
The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[31] |
J. Villavert,
Sharp existence criteria for positive solutions of Hardy-Sobolev type systems, Commun. Pure Appl. Anal., 14 (2015), 493-515.
doi: 10.3934/cpaa.2015.14.493. |
[32] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[33] |
X. Yu,
Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differ. Equ., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
[1] |
Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 |
[2] |
Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184 |
[3] |
Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513 |
[4] |
Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167 |
[5] |
Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 |
[6] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[7] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036 |
[8] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[9] |
Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094 |
[10] |
Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011 |
[11] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[12] |
Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 |
[13] |
Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 |
[14] |
Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 |
[15] |
Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511 |
[16] |
Daomin Cao, Guolin Qin. Liouville type theorems for fractional and higher-order fractional systems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2269-2283. doi: 10.3934/dcds.2020361 |
[17] |
Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155 |
[18] |
Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99 |
[19] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[20] |
Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]