We establish the existence of solutions to a weakly-coupled competitive system of polyharmonic equations in $ \mathbb{R}^N $ which are invariant under a group of conformal diffeomorphisms, and study the behavior of least energy solutions as the coupling parameters tend to $ -\infty $. We show that the supports of the limiting profiles of their components are pairwise disjoint smooth domains and solve a nonlinear optimal partition problem of $ \mathbb R^N $. We give a detailed description of the shape of these domains.
Citation: |
[1] |
T. Bartsch, M. Schneider and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math., 571 (2004), 131-143.
doi: 10.1515/crll.2004.037.![]() ![]() ![]() |
[2] |
H. Baum and A. Juhl, Conformal Differential Geometry: Q-Curvature and Conformal Holonomy, Oberwolfach Seminars 40, 2010, Birkhäuser Verlag AG Basel-Boston-Berlin.
doi: 10.1007/978-3-7643-9909-2.![]() ![]() ![]() |
[3] |
T. Bartsch and Y. Guo, Existence and nonexistence results for critical growth polyharmonic elliptic systems, J. Differ. Equ., 220 (2006), 531-543.
doi: 10.1016/j.jde.2004.12.001.![]() ![]() ![]() |
[4] |
M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differ. Equ., 57 (2018), 20 pp.
doi: 10.1007/s00526-017-1283-9.![]() ![]() ![]() |
[5] |
M. Clapp and A. Szulkin, A simple variational approach to weakly coupled competitive elliptic systems, Nonlinear Differ. Equ. Appl., 26 (2019), 21 pp.
doi: 10.1007/s00030-019-0572-8.![]() ![]() ![]() |
[6] |
M. Clapp, A. Saldaña and A. Szulkin, Phase separation, optimal partitions, and nodal solutions to the Yamabe equation on the sphere, Int. Math. Res. Not., 5 (2021), 3633-3652.
doi: 10.1093/imrn/rnaa053.![]() ![]() ![]() |
[7] |
M. Conti, S. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888.
doi: 10.1016/S0294-1449(02)00104-X.![]() ![]() ![]() |
[8] |
W. Y. Ding, On a conformally invariant elliptic equation on $\mathbb{R}^n$, Comm. Math. Phys., 107 (1986), 331-335.
![]() ![]() |
[9] |
Z. Djadi, E. Hebey and M. Ledoux, Paneitz-type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4.![]() ![]() ![]() |
[10] |
J. C. Fernández and J. Petean, Low energy nodal solutions to the Yamabe equation, J. Differ. Equ., 268 (2020), 6576-6597.
doi: 10.1016/j.jde.2019.11.043.![]() ![]() ![]() |
[11] |
C. Fefferman and C. R. Graham, The Ambient Metric, Annals of Mathematics Studies, 178, 2011.
![]() ![]() |
[12] |
F. Gazzola, H. Grunau and G. Sweers, Polyharmonic boundary value problems, in Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, SpringerVerlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3.![]() ![]() ![]() |
[13] |
S. Goyal and A. Rani, Polyharmonic systems involving critical nonlinearities with sign-changing weight functions, Electron. J. Differ. Equ., 119 (2020), 1-25.
![]() ![]() |
[14] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611972030.ch1.![]() ![]() ![]() |
[15] |
J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Am. Math. Soc., 17 (1987), 37-91.
doi: 10.1090/S0273-0979-1987-15514-5.![]() ![]() ![]() |
[16] |
C. Lin, Strong unique continuation for $m$-th powers of a Laplacian operator with singular coefficients, Proc. Amer. Math. Soc., 135 (2007), 569-578.
doi: 10.1090/S0002-9939-06-08740-5.![]() ![]() ![]() |
[17] |
S. Luckhaus, Existence and regularity of weak solutions to the Dirichlet problem for semilinear elliptic systems of higher order, J. Reine Angew. Math., 306 (1979), 192-207.
doi: 10.1515/crll.1979.306.192.![]() ![]() ![]() |
[18] |
M. Montenegro, On nontrivial solutions of critical polyharmonic elliptic systems, J. Differ. Equ., 247 (2009), 906-916.
doi: 10.1016/j.jde.2009.03.005.![]() ![]() ![]() |
[19] |
R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
![]() ![]() |
[20] |
M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91.
doi: 10.2307/1993331.![]() ![]() ![]() |
[21] |
F. Robert, Admissible Q-curvatures under isometries for the conformal GJMS operators, Contemp. Math., 540 (2011), 241-259.
doi: 10.1090/conm/540/10668.![]() ![]() ![]() |
[22] |
N. Soave, H. Tavares, S. Terracini and A. Zilio, Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping, Nonlinear Anal., 138 (2016), 388-427.
doi: 10.1016/j.na.2015.10.023.![]() ![]() ![]() |
[23] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-662-03212-1.![]() ![]() ![]() |
[24] |
M. Tarulli, $H^2$-scattering for systems of weakly coupled fourth-order NLS equations in low space dimensions, Potential Anal., 51 (2019), 291-313.
doi: 10.1007/s11118-018-9712-8.![]() ![]() ![]() |
[25] |
M. Willem, Minimax Theorems, , Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |