• Previous Article
    Periodic solutions with prescribed minimal period for second order even Hamiltonian systems
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction
doi: 10.3934/cpaa.2021146
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Invasion waves for a nonlocal dispersal predator-prey model with two predators and one prey

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author

Received  September 2020 Revised  June 2021 Early access September 2021

Fund Project: F. Y. Yang was partially supported by NSF of China (11601205) and W. T. Li was partially supported by NSF of China (11731005, 11671180)

This paper is concerned with the propagation dynamics of a nonlocal dispersal predator-prey model with two predators and one prey. Precisely, our main concern is the invasion process of the two predators into the habitat of one prey, when the two predators are weak competitors in the absence of prey. This invasion process is characterized by the spreading speed of the predators as well as the minimal wave speed of traveling waves connecting the predator-free state to the co-existence state. Particularly, the right-hand tail limit of wave profile is derived by the idea of contracting rectangle.

Citation: Feiying Yang, Wantong Li, Renhu Wang. Invasion waves for a nonlocal dispersal predator-prey model with two predators and one prey. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021146
References:
[1]

F. Andreu-Vaillo, J. M. Maz$\acute{o}$n, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differ. Equ., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

P. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

Z. Bi and S. Pan, Dynamics of a predator-prey system with three species, Bound. Value Probl., 162 (2018), 25 pp. doi: 10.1186/s13661-018-1084-x.  Google Scholar

[5]

X. BaoW.T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differ. Equ., 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[6]

X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[7]

Y. Y. ChenJ. S. Guo and C. H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[8]

A. Ducrot, J. S. Guo, G. Lin and S. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[9]

Z. DuZ. Feng and X. Zhang, Traveling wave phenomena of n-dimensional diffusive predator-prey systems, Nonlinear Anal. Real World Appl., 41 (2018), 288-312.  doi: 10.1016/j.nonrwa.2017.10.012.  Google Scholar

[10]

F. D. Dong, W. T. Li and G. B. Zhang, Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 17 pp. doi: 10.1016/j.cnsns.2019.104926.  Google Scholar

[11]

P. Fife, Some nonclassical trends in parabolic and parabolic–like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin (2003), 153–191. doi: 10.1007/978-3-662-05281-5_3.  Google Scholar

[12]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955-1974.  doi: 10.1137/10080693X.  Google Scholar

[13]

J. S. GuoK. I. NakamuraT. Ogiwara and C. C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. Real World Appl., 54 (2020), 103-111.  doi: 10.1016/j.nonrwa.2020.103111.  Google Scholar

[14]

C. H. Hsu and J. J. Lin, Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models, Commun. Pure Appl. Anal., 18 (2019), 1483-1508.  doi: 10.3934/cpaa.2019071.  Google Scholar

[15]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[16]

Y. Jin and X. Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[18]

W. T. LiW. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst., 37 (2017), 2483-2512.  doi: 10.3934/dcds.2017107.  Google Scholar

[19]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[20]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dynam. Differ. Equ., 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[21]

J. D. Murray, Mathematical Biology, II, Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[22]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[23]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[24]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differ. Equ., 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[25]

X. J. Wang and G. Lin, Asymptotic spreading for a time-periodic predator-prey system, Commun. Pure Appl. Anal., 18 (2019), 2983-2999.  doi: 10.3934/cpaa.2019133.  Google Scholar

[26]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay, Nonlinearity, 23 (2010), 1609-1630.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[27]

C.C. Wu, The spreading speed for a predator-prey model with one predator and two preys, Appl. Math. Lett., 91 (2019), 9-14.  doi: 10.1016/j.aml.2018.11.022.  Google Scholar

[28]

W. B. XuW. T. Li and G. Lin, Nonlocal dispersal cooperative systems: acceleration propagation among species, J. Differ. Equ., 268 (2020), 1081-1105.  doi: 10.1016/j.jde.2019.08.039.  Google Scholar

[29]

F. Y. YangW. T. Li and J. B. Wang, Wave propagation for a class of non-local dispersal non-cooperative systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1965-1997.  doi: 10.1017/prm.2019.4.  Google Scholar

[30]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[31]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[32]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[33]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[34]

T. Zhang and Y. Jin, Traveling waves for a reaction-diffusion-advection predator-prey model, Nonlinear Anal. Real World Appl., 36 (2017), 203-232.  doi: 10.1016/j.nonrwa.2017.01.011.  Google Scholar

[35]

T. ZhangW. Wang and K. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differ. Equ., 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Maz$\acute{o}$n, J. D. Rossi and J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differ. Equ., 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

P. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[4]

Z. Bi and S. Pan, Dynamics of a predator-prey system with three species, Bound. Value Probl., 162 (2018), 25 pp. doi: 10.1186/s13661-018-1084-x.  Google Scholar

[5]

X. BaoW.T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differ. Equ., 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[6]

X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[7]

Y. Y. ChenJ. S. Guo and C. H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[8]

A. Ducrot, J. S. Guo, G. Lin and S. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. doi: 10.1007/s00033-019-1188-x.  Google Scholar

[9]

Z. DuZ. Feng and X. Zhang, Traveling wave phenomena of n-dimensional diffusive predator-prey systems, Nonlinear Anal. Real World Appl., 41 (2018), 288-312.  doi: 10.1016/j.nonrwa.2017.10.012.  Google Scholar

[10]

F. D. Dong, W. T. Li and G. B. Zhang, Invasion traveling wave solutions of a predator-prey model with nonlocal dispersal, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 17 pp. doi: 10.1016/j.cnsns.2019.104926.  Google Scholar

[11]

P. Fife, Some nonclassical trends in parabolic and parabolic–like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin (2003), 153–191. doi: 10.1007/978-3-662-05281-5_3.  Google Scholar

[12]

J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955-1974.  doi: 10.1137/10080693X.  Google Scholar

[13]

J. S. GuoK. I. NakamuraT. Ogiwara and C. C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. Real World Appl., 54 (2020), 103-111.  doi: 10.1016/j.nonrwa.2020.103111.  Google Scholar

[14]

C. H. Hsu and J. J. Lin, Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models, Commun. Pure Appl. Anal., 18 (2019), 1483-1508.  doi: 10.3934/cpaa.2019071.  Google Scholar

[15]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[16]

Y. Jin and X. Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[17]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[18]

W. T. LiW. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst., 37 (2017), 2483-2512.  doi: 10.3934/dcds.2017107.  Google Scholar

[19]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[20]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dynam. Differ. Equ., 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[21]

J. D. Murray, Mathematical Biology, II, Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.  Google Scholar

[22]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equ., 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.  Google Scholar

[23]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[24]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differ. Equ., 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[25]

X. J. Wang and G. Lin, Asymptotic spreading for a time-periodic predator-prey system, Commun. Pure Appl. Anal., 18 (2019), 2983-2999.  doi: 10.3934/cpaa.2019133.  Google Scholar

[26]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delay, Nonlinearity, 23 (2010), 1609-1630.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[27]

C.C. Wu, The spreading speed for a predator-prey model with one predator and two preys, Appl. Math. Lett., 91 (2019), 9-14.  doi: 10.1016/j.aml.2018.11.022.  Google Scholar

[28]

W. B. XuW. T. Li and G. Lin, Nonlocal dispersal cooperative systems: acceleration propagation among species, J. Differ. Equ., 268 (2020), 1081-1105.  doi: 10.1016/j.jde.2019.08.039.  Google Scholar

[29]

F. Y. YangW. T. Li and J. B. Wang, Wave propagation for a class of non-local dispersal non-cooperative systems, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1965-1997.  doi: 10.1017/prm.2019.4.  Google Scholar

[30]

F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[31]

F. Y. YangY. LiW. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[32]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[33]

G. B. ZhangW. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[34]

T. Zhang and Y. Jin, Traveling waves for a reaction-diffusion-advection predator-prey model, Nonlinear Anal. Real World Appl., 36 (2017), 203-232.  doi: 10.1016/j.nonrwa.2017.01.011.  Google Scholar

[35]

T. ZhangW. Wang and K. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differ. Equ., 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

[1]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[2]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[3]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[4]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[5]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[6]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021210

[7]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[8]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[9]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[10]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[11]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3461-3489. doi: 10.3934/dcdsb.2020069

[12]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[13]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[14]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[15]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[16]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[17]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081

[18]

Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1811-1825. doi: 10.3934/dcdsb.2020040

[19]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[20]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (94)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]