In this paper, we consider the weighted fourth order equation
$ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $
where
$ \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} = n-2. $
We prove the existence of radial solutions to the equation for some
Citation: |
[1] |
M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848.
doi: 10.1016/j.na.2012.02.005.![]() ![]() ![]() |
[2] |
P. Caldiroli and G. Cora, Entire solutions for a class of fourth-order semilinear elliptic equations with weights, Mediterr. J. Math., 13 (2016), 657-675.
doi: 10.1007/s00009-015-0519-1.![]() ![]() ![]() |
[3] |
P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687.
doi: 10.1007/s00032-011-0167-2.![]() ![]() ![]() |
[4] |
P. Caldiroli and R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differ. Equ., 45 (2012), 147-164.
doi: 10.1007/s00526-011-0454-3.![]() ![]() ![]() |
[5] |
R. Frank and T. König, Classification of positive solutions to a nonlinear biharmonic equation with critical exponent, Anal. Partial Differ. Equ., 12 (2019), 1101-1113.
doi: 10.2140/apde.2019.12.1101.![]() ![]() ![]() |
[6] |
R. Frank and T. König, Singular solution to a semilinear biharmonic equation with a general critical nonlinearity, Rend. Lincei Mat. Appl., 30 (2019), 817-846.
doi: 10.4171/RLM/871.![]() ![]() ![]() |
[7] |
Z. M. Guo, X. Huang, L. P. Wang and J. C. Wei, On Delaunay solutions of a biharmonic elliptic equation with critical exponent, J. Anal. Math., 140 (2020), 371-394.
doi: 10.1007/s11854-020-0096-5.![]() ![]() ![]() |
[8] |
Z. M. Guo, F. S. Wan and L. P. Wang, Embeddings of weighted Sobolev spaces and a weighted fourth-order elliptic equation, Commun. Contemp. Math., 22 (2020), 1950057, 40 pp.
doi: 10.1142/S0219199719500573.![]() ![]() ![]() |
[9] |
X. Huang and L. P. Wang, Classification to the positive radial solutions with weighted biharmonic equation, Discrete Contin. Dyn. Syst., 40 (2020), 4821-4837.
doi: 10.3934/dcds.2020203.![]() ![]() ![]() |
[10] |
X. Huang and D. Ye, Hardy-Rellich type equalities, preprint.
![]() |
[11] |
C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^N$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
[12] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109–145.
![]() ![]() |
[13] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.
![]() ![]() |
[14] |
R. Musina, Weighted Sobolev spaces of radially symmetric functions, Ann. Mat. Pura Appl., 193 (2014), 1626-1659.
doi: 10.1007/s10231-013-0348-4.![]() ![]() ![]() |