We consider fully coupled cooperative systems on $ \mathbb{R}^n $ with coefficients that decay exponentially at infinity. Expanding some results obtained previously on bounded domain, we prove that the existence of a strictly positive supersolution ensures the first eigenvalue to exist and to be nonzero. This result is applied to show that the topological solutions for a Chern-Simons model, described by a semilinear system on $ \mathbb{R}^2 $ with exponential nonlinearity, are nondegenerate.
Citation: |
[1] |
R. A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains, J. Differ. Equ., 9 (1971), 325-334.
doi: 10.1016/0022-0396(71)90085-4.![]() ![]() ![]() |
[2] |
I. Birindelli, E. Mitidieri and G. Sweers, Existence of the principal eigenvalue for cooperative elliptic systems in a general domain, Differ. Equ., 35 (1999), 326-334.
![]() ![]() |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
![]() ![]() |
[4] |
H. Brezis and F. Merle, Uniform estimates and blow up behavior for solutions of $- \Delta u = V(x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
[5] |
K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on$\mathbb{R}^{n}$, Proc. Amer. Math. Soc., 109 (1990), 147-155.
doi: 10.2307/2048374.![]() ![]() ![]() |
[6] |
J. Busca and B. Sirakov, Symmetry results for semi-linear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.
doi: 10.1006/jdeq.1999.3701.![]() ![]() ![]() |
[7] |
L. Cardoulis, Principal eigenvalues for systems of Schrödinger equations defined in the whole space with indefinite weights, Math. Slovaca, 65 (2015), 1079-1094.
doi: 10.1515/ms-2015-0074.![]() ![]() ![]() |
[8] |
K. C. Chang, Principal eigenvalue for weight matrix in elliptic systems, Nonlinear Anal., 46 (2001), 419-433.
doi: 10.1016/S0362-546X(00)00140-1.![]() ![]() ![]() |
[9] |
S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math., 99 (1974), 48-69.
doi: 10.2307/1971013.![]() ![]() ![]() |
[10] |
J. L. Chern, Z. Y. Chen and C. S. Lin, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, Commun. Math. Phys., 296 (2010), 323-351.
doi: 10.1007/s00220-010-1021-z.![]() ![]() ![]() |
[11] |
K. Choe, N. Kim, Y. Lee and C. S. Lin, Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in$\mathbb{R} ^{2}$, J. Funct. Anal., 273 (2017), 1734-1761.
doi: 10.1016/j.jfa.2017.05.012.![]() ![]() ![]() |
[12] |
J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integ. Equ. Operat. Theory, 2 (1979), 174-198.
doi: 10.1007/BF01682733.![]() ![]() ![]() |
[13] |
D. G. de Figueiredo and E. Mitidieri, Maximum principles for cooperative elliptic systems, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 49-52.
![]() ![]() |
[14] |
G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B, 345 (1995), 452-457.
doi: 10.1016/0370-2693(94)01649-W.![]() ![]() ![]() |
[15] |
X. Han and G. Huang, Existence theorems for a general $ 2\times 2$ non-Abelian Chern-Simons-Higgs system over a torus, J. Differ. Equ., 263 (2017), 1522-1551.
doi: 10.1016/j.jde.2017.03.017.![]() ![]() ![]() |
[16] |
P. Hess and S. Senn, Another approach to elliptic eigenvalue problems with respect to indefinite weight functions,, in Nonlinear Analysis and Optimization, Springer, Berlin, 1984.
doi: 10.1007/BFb0101496.![]() ![]() ![]() |
[17] |
R. Janssen, The dirichlet problem for second order elliptic operators on unbounded domains, Appl. Anal., 19 (1985), 201-216.
doi: 10.1080/00036818508839545.![]() ![]() ![]() |
[18] |
C. Kim, C. Lee, P. Ko, B. H. Lee and H. Min, Schrödinger fields on the plane with $[U(1)]^N$ Chern-Simons interactions and generalized self-dual solitons, Phys. Rev. D, 48 (1993), 1821-1840.
doi: 10.1103/PhysRevD.48.1821.![]() ![]() ![]() |
[19] |
C. S. Lin, A. C. Ponce and Y. Yang, A system of elliptic equations arising in Chern-Simons field theory, J. Funct. Anal., 247 (2007), 289-350.
doi: 10.1016/j.jfa.2007.03.010.![]() ![]() ![]() |
[20] |
C. S. Lin and J. V. Prajapat, Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus, Comm. Math. Phys., 288 (2009), 311-347.
doi: 10.1007/s00220-009-0774-8.![]() ![]() ![]() |
[21] |
E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.
doi: 10.1002/mana.19951730115.![]() ![]() ![]() |
[22] |
B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.
doi: 10.1007/BF01162028.![]() ![]() ![]() |
[23] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() ![]() |
[24] |
R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511526244.![]() ![]() ![]() |
[25] |
M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc., 72 (1966), 251-255.
doi: 10.1090/S0002-9904-1966-11485-4.![]() ![]() ![]() |
[26] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, , Prentice-Hall, Inc., Englewood Cliffs, N. J. 1967
![]() ![]() |
[27] |
B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
doi: 10.1090/S0273-0979-1982-15041-8.![]() ![]() ![]() |
[28] |
H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974.
![]() ![]() |
[29] |
G. Sweers, Strong positivity in $C(\bar{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.
doi: 10.1007/BF02570833.![]() ![]() ![]() |
[30] |
G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differ. Equ., 29 (2007), 191-217.
doi: 10.1007/s00526-006-0062-9.![]() ![]() ![]() |
[31] |
Y. Yang, The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., 186 (1997), 199-218.
doi: 10.1007/BF02885678.![]() ![]() ![]() |
Typical behaviour of the potential