December  2021, 20(12): 4239-4251. doi: 10.3934/cpaa.2021157

Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction

Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

* Corresponding author

Received  March 2021 Revised  July 2021 Published  December 2021 Early access  September 2021

Fund Project: The first author was supported by JSPS KAKENHI Grant Numbers 17H01092, 19K03587

In this paper, we consider the asymptotic behavior of the ground state and its energy for the nonlinear Schrödinger system with three wave interaction on the parameter $ \gamma $ as $ \gamma \to \infty $. In addition we prove the existence of the positive threshold $ \gamma^* $ such that the ground state is a scalar solution for $ 0 \le \gamma < \gamma^* $ and is a vector solution for $ \gamma > \gamma^* $.

Citation: Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157
References:
[1]

A. H. Ardila, Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction, Nonlinear Anal., 167 (2018), 1-20.  doi: 10.1016/j.na.2017.10.013.

[2]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., 17 (2004), 297-330. 

[3]

M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math., 193 (2006), 535-562.  doi: 10.1016/j.cam.2005.05.031.

[4]

M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223.  doi: 10.1137/110823808.

[5]

M. ColinT. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcial. Ekvac., 52 (2009), 371-380.  doi: 10.1619/fesi.52.371.

[6]

M. ColinT. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[7]

H. Kikuchi and M. Ohta, Instability of standing waves for the Klein-Gordon-Schrödinger system, Hokkaido Math. J., 37 (2008), 735-748.  doi: 10.14492/hokmj/1249046366.

[8]

K. Kurata and Y. Osada, Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction, Discrete Contin. Dyn. Syst. Ser. B, (2021), 37 pp. doi: 10.3934/dcdsb.2021100.

[9]

Y. Osada, Energy asymptotic expansion for a system of nonlinear Schrödinger equations with three wave interaction, submitted.

[10]

A. Pomponio, Ground states for a system of nonlinear Schrödinger equations with three wave interaction, J. Math. Phys., 51 (2010), 093513.  doi: 10.1063/1.3486069.

[11]

R. TianZ. Q. Wang and L. Zhao, Schrödinger systems with quadratic interactions, Commun. Contemp. Math., 21 (2019), 1850077.  doi: 10.1142/S0219199718500773.

[12]

J. Wang, Solitary waves for coupled nonlinear elliptic system with nonhomogeneous nonlinearities, Calc. Var. Partial Differ. Equ., 56 (2017), 1-38.  doi: 10.1007/s00526-017-1147-3.

[13]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differ. Equ., 54 (2015), 2657-2691. 

show all references

References:
[1]

A. H. Ardila, Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction, Nonlinear Anal., 167 (2018), 1-20.  doi: 10.1016/j.na.2017.10.013.

[2]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., 17 (2004), 297-330. 

[3]

M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math., 193 (2006), 535-562.  doi: 10.1016/j.cam.2005.05.031.

[4]

M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223.  doi: 10.1137/110823808.

[5]

M. ColinT. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcial. Ekvac., 52 (2009), 371-380.  doi: 10.1619/fesi.52.371.

[6]

M. ColinT. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[7]

H. Kikuchi and M. Ohta, Instability of standing waves for the Klein-Gordon-Schrödinger system, Hokkaido Math. J., 37 (2008), 735-748.  doi: 10.14492/hokmj/1249046366.

[8]

K. Kurata and Y. Osada, Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction, Discrete Contin. Dyn. Syst. Ser. B, (2021), 37 pp. doi: 10.3934/dcdsb.2021100.

[9]

Y. Osada, Energy asymptotic expansion for a system of nonlinear Schrödinger equations with three wave interaction, submitted.

[10]

A. Pomponio, Ground states for a system of nonlinear Schrödinger equations with three wave interaction, J. Math. Phys., 51 (2010), 093513.  doi: 10.1063/1.3486069.

[11]

R. TianZ. Q. Wang and L. Zhao, Schrödinger systems with quadratic interactions, Commun. Contemp. Math., 21 (2019), 1850077.  doi: 10.1142/S0219199718500773.

[12]

J. Wang, Solitary waves for coupled nonlinear elliptic system with nonhomogeneous nonlinearities, Calc. Var. Partial Differ. Equ., 56 (2017), 1-38.  doi: 10.1007/s00526-017-1147-3.

[13]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differ. Equ., 54 (2015), 2657-2691. 

[1]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[2]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[3]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202

[7]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[8]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[9]

Mohammad Ali Husaini, Chuangye Liu. Synchronized and ground-state solutions to a coupled Schrödinger system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 639-667. doi: 10.3934/cpaa.2021192

[10]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[11]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[12]

Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022

[13]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[14]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[15]

Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control and Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015

[16]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[17]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic and Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[18]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[19]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[20]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (140)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]