-
Previous Article
Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds
- CPAA Home
- This Issue
-
Next Article
Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure
Controllability and stabilization of gravity-capillary surface water waves in a basin
1. | Huawei Beijing Research Center, 156 Beiqing Rd, Haidian District, Beijing, 100039, China |
2. | Beijing National Day School, No. 66 Yuquan Lu, Haidian District, Beijing, 100039, China |
3. | Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA |
The paper concerns the controllability and stabilization of surface water waves in a two-dimensional rectangular basin under the forces of gravity and surface tension. The surface waves are generated by a wave-maker placed at the left side-boundary and it is physical relevant to see whether the surface waves are controllable or can be stabilized using appropriate motion of the wave-maker. Due to the surface tension, an edge condition must be imposed at the contact point between the free surface and a solid boundary. Two types of wave-makers are considered: "flexible" or "rigid". It is shown that the surface waves are approximately controllable, but not exactly controllable, for both "flexible" and "rigid" wave-makers. In addition, under a static feedback to control a "rigid" wave-maker, the strong stability of feedback control system is obtained.
Correction: The page numbers on each page of the PDF file have been corrected. We apologize for any inconvenience this may cause.
References:
[1] |
T. Alazard,
Stabilization of the water-wave equations with surface tension, Ann. Partial Differ. Equ., 3 (2017), 1-41.
doi: 10.1007/s40818-017-0032-x. |
[2] |
T. Alazard,
Stabilization of gravity water waves, Journal de Mathèmatiques Pures et Appliquèes, 114 (2018), 51-84.
doi: 10.1016/j.matpur.2017.09.012. |
[3] |
T. Alazard, P. Baldi and and D. Han-Kwan,
Control of water waves, J. Euro. Math. Soc., 20 (2018), 657-745.
doi: 10.4171/JEMS/775. |
[4] |
S. Avdonin and S. Ivanov, Families of Exponentials, Cambridge University Press, Cambridge, UK, 1995.
![]() ![]() |
[5] |
K. Balachandran and J.P. Dauer,
Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., 115 (2002), 7-28.
doi: 10.1023/A:1019668728098. |
[6] |
C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim., 16 (1978) 373–379
doi: 10.1137/0316023. |
[7] |
T. B. Benjamin and F. Ursell,
The stability of the plane free surface of a liquid in a vertical periodic motion, Proc. Roy. Soc. Ser. A, 225 (1954), 505-515.
doi: 10.1098/rspa.1954.0218. |
[8] |
R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[9] |
D. V. Evans,
The effect of surface tension on the waves produced by a heaving circular cylinder, Proc. Cambridge Philos. Soc., 64 (1968), 833-847.
|
[10] |
P. Grisvard, Elliptic Problems in Non-Smooth Domains, Pitman, Boston, 1985. |
[11] |
L. M. Hocking,
Capillary-gravity waves produced by a heaving body, J. Fluid Mech., 186 (1986), 337-349.
|
[12] |
A. E. Ingham,
Some trigonometrical inequalities with applications to the theory of series, Math. Zeit., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[13] |
G. Joly, S. Mottelet and J. Yvon, Analysis of the control of wave generators in a canal, in Control of Partial Differential Equations and Applications (Laredo, 1994), Marcel Dekker, New York, (1996), 119–134. |
[14] |
V. Komornik, A generalization of Ingham's inequality, in Colloq. Math. Soc. $J\grave{a}nos$ Bolyai, Differential Equations Applications, 62 (1991), 213–217. |
[15] |
I. Lasiecka and R. Triggiani,
Finite rank, relatively bounded perturbations of c-semi-groups, part II: Spectrum allocation and Riesz basis in parabolic and hyperbolic feedback systems, Ann. Mat. Pura Appl., CXLIII (1986), 47-100.
doi: 10.1007/BF01769210. |
[16] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972. |
[17] |
J. L. Lions,
Exact controllability, stabilization and perturbations for distributed parameter systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[18] |
J. L. Lions, Contôlabilité exacte, perturbation et stabilisation de systémes distribués 1, 2, in Collection Recherches en Mathématiques Appliquées, Vol. 8, 9, Masson, Paris, 1988. |
[19] |
S. Mottelet, Quelques Aspects Théoriques et Numériques du Contôle d'un Bassin de Carénes, Ph.D. thesis, Université de Technologie de Compiégne, Compiégne, France, 1994. |
[20] |
S. Mottelet, G. Joly and J. Yvon, Design of a feedback controller for wave generators in a canal using $H^{\infty}$ methods, in System Modelling and Optimizaation, Lecture Notes in Control and Inform, Springer-Verlag, London, 1994.
doi: 10.1007/BFb0035521. |
[21] |
S. Mottelet,
Controllability and stabilization of a canal with wave generators, SIAM J. Control Optim., 38 (2000), 711-735.
doi: 10.1137/S0363012998347134. |
[22] |
M. D. Quinn and N. Carmichael,
An approach to nonlinear control problems using fixed-point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim., 7 (1984/1985), 197-219.
doi: 10.1080/01630568508816189. |
[23] |
P. F. Rhodes-Robinson,
On the forced surface waves due to a vertical wave maker in the presence of surface tension, Proc. Cambridge Philos. Soc., 70 (1971), 323-337.
doi: 10.1017/s0305004100049926. |
[24] |
M. C. Shen, S. M. Sun and D. Y. Hsieh,
Forced capillary-gravity waves in a circular basin, Wave Motion, 18 (1993), 401-412.
doi: 10.1016/0165-2125(93)90068-Q. |
[25] |
R. Triggiani,
A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 15 (1977), 407-411.
doi: 10.1137/0315028. |
[26] |
R. Triggiani,
Addendum: "A note on the lack of exact controllability for mild solutions in Banach spaces", SIAM J. Control Optim., 18 (1980), 98-99.
doi: 10.1137/0318007. |
[27] |
R. Triggiani,
Finite rank, relatively bounded perturbations of semi-groups generators, part III: A sharp result on the lack of uniform stabilization, Differ. Integral Equ., 3 (1990), 503-522.
|
[28] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974. |
[29] |
H. Zhu,
Control of three dimensional water waves, Arch. Ration. Mech. Anal., 236 (2020), 893-966.
doi: 10.1007/s00205-019-01485-3. |
show all references
References:
[1] |
T. Alazard,
Stabilization of the water-wave equations with surface tension, Ann. Partial Differ. Equ., 3 (2017), 1-41.
doi: 10.1007/s40818-017-0032-x. |
[2] |
T. Alazard,
Stabilization of gravity water waves, Journal de Mathèmatiques Pures et Appliquèes, 114 (2018), 51-84.
doi: 10.1016/j.matpur.2017.09.012. |
[3] |
T. Alazard, P. Baldi and and D. Han-Kwan,
Control of water waves, J. Euro. Math. Soc., 20 (2018), 657-745.
doi: 10.4171/JEMS/775. |
[4] |
S. Avdonin and S. Ivanov, Families of Exponentials, Cambridge University Press, Cambridge, UK, 1995.
![]() ![]() |
[5] |
K. Balachandran and J.P. Dauer,
Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., 115 (2002), 7-28.
doi: 10.1023/A:1019668728098. |
[6] |
C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim., 16 (1978) 373–379
doi: 10.1137/0316023. |
[7] |
T. B. Benjamin and F. Ursell,
The stability of the plane free surface of a liquid in a vertical periodic motion, Proc. Roy. Soc. Ser. A, 225 (1954), 505-515.
doi: 10.1098/rspa.1954.0218. |
[8] |
R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[9] |
D. V. Evans,
The effect of surface tension on the waves produced by a heaving circular cylinder, Proc. Cambridge Philos. Soc., 64 (1968), 833-847.
|
[10] |
P. Grisvard, Elliptic Problems in Non-Smooth Domains, Pitman, Boston, 1985. |
[11] |
L. M. Hocking,
Capillary-gravity waves produced by a heaving body, J. Fluid Mech., 186 (1986), 337-349.
|
[12] |
A. E. Ingham,
Some trigonometrical inequalities with applications to the theory of series, Math. Zeit., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[13] |
G. Joly, S. Mottelet and J. Yvon, Analysis of the control of wave generators in a canal, in Control of Partial Differential Equations and Applications (Laredo, 1994), Marcel Dekker, New York, (1996), 119–134. |
[14] |
V. Komornik, A generalization of Ingham's inequality, in Colloq. Math. Soc. $J\grave{a}nos$ Bolyai, Differential Equations Applications, 62 (1991), 213–217. |
[15] |
I. Lasiecka and R. Triggiani,
Finite rank, relatively bounded perturbations of c-semi-groups, part II: Spectrum allocation and Riesz basis in parabolic and hyperbolic feedback systems, Ann. Mat. Pura Appl., CXLIII (1986), 47-100.
doi: 10.1007/BF01769210. |
[16] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972. |
[17] |
J. L. Lions,
Exact controllability, stabilization and perturbations for distributed parameter systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[18] |
J. L. Lions, Contôlabilité exacte, perturbation et stabilisation de systémes distribués 1, 2, in Collection Recherches en Mathématiques Appliquées, Vol. 8, 9, Masson, Paris, 1988. |
[19] |
S. Mottelet, Quelques Aspects Théoriques et Numériques du Contôle d'un Bassin de Carénes, Ph.D. thesis, Université de Technologie de Compiégne, Compiégne, France, 1994. |
[20] |
S. Mottelet, G. Joly and J. Yvon, Design of a feedback controller for wave generators in a canal using $H^{\infty}$ methods, in System Modelling and Optimizaation, Lecture Notes in Control and Inform, Springer-Verlag, London, 1994.
doi: 10.1007/BFb0035521. |
[21] |
S. Mottelet,
Controllability and stabilization of a canal with wave generators, SIAM J. Control Optim., 38 (2000), 711-735.
doi: 10.1137/S0363012998347134. |
[22] |
M. D. Quinn and N. Carmichael,
An approach to nonlinear control problems using fixed-point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim., 7 (1984/1985), 197-219.
doi: 10.1080/01630568508816189. |
[23] |
P. F. Rhodes-Robinson,
On the forced surface waves due to a vertical wave maker in the presence of surface tension, Proc. Cambridge Philos. Soc., 70 (1971), 323-337.
doi: 10.1017/s0305004100049926. |
[24] |
M. C. Shen, S. M. Sun and D. Y. Hsieh,
Forced capillary-gravity waves in a circular basin, Wave Motion, 18 (1993), 401-412.
doi: 10.1016/0165-2125(93)90068-Q. |
[25] |
R. Triggiani,
A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., 15 (1977), 407-411.
doi: 10.1137/0315028. |
[26] |
R. Triggiani,
Addendum: "A note on the lack of exact controllability for mild solutions in Banach spaces", SIAM J. Control Optim., 18 (1980), 98-99.
doi: 10.1137/0318007. |
[27] |
R. Triggiani,
Finite rank, relatively bounded perturbations of semi-groups generators, part III: A sharp result on the lack of uniform stabilization, Differ. Integral Equ., 3 (1990), 503-522.
|
[28] |
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974. |
[29] |
H. Zhu,
Control of three dimensional water waves, Arch. Ration. Mech. Anal., 236 (2020), 893-966.
doi: 10.1007/s00205-019-01485-3. |
[1] |
Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927 |
[2] |
Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183 |
[3] |
Frédéric Rousset, Nikolay Tzvetkov. On the transverse instability of one dimensional capillary-gravity waves. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 859-872. doi: 10.3934/dcdsb.2010.13.859 |
[4] |
Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control and Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315 |
[5] |
Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205 |
[6] |
Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 |
[7] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287 |
[8] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241 |
[9] |
Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583 |
[10] |
Adèle Bourgeois, Victor LeBlanc, Frithjof Lutscher. Dynamical stabilization and traveling waves in integrodifference equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3029-3045. doi: 10.3934/dcdss.2020117 |
[11] |
G. A. Leonov. Generalized Lorenz Equations for Acoustic-Gravity Waves in the Atmosphere. Attractors Dimension, Convergence and Homoclinic Trajectories. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2253-2267. doi: 10.3934/cpaa.2017111 |
[12] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[13] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[14] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[15] |
Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1 |
[16] |
Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009 |
[17] |
Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103 |
[18] |
Mikhail Kovalyov. On the nature of large and rogue waves. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3061-3093. doi: 10.3934/dcds.2014.34.3061 |
[19] |
Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847 |
[20] |
Paolo Paoletti. Acceleration waves in complex materials. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 637-659. doi: 10.3934/dcdsb.2012.17.637 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]