December  2021, 20(12): 4347-4377. doi: 10.3934/cpaa.2021163

Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama city, Kanagawa, JAPAN

Received  May 2021 Revised  August 2021 Published  December 2021 Early access  September 2021

We consider the Cauchy problems for Schrödinger equations with an inverse-square potential and a harmonic one. Since the Mehler type formulas are completed, the pseudo-conformal transforms can be constructed. Thus we can convert the problems into the nonautonomous Schrödinger equations without a harmonic oscillator.

Citation: Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163
References:
[1]

K. AoudaN. KandaS. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D, 102 (2020), 025002.  doi: 10.1103/physrevd.102.025002.  Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[3]

F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191-2196.   Google Scholar

[4]

F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 ("Erratum", ibidem 37 (1996), 3646). doi: 10.1063/1.1665604.  Google Scholar

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.  doi: 10.1137/S0036141002416936.  Google Scholar

[6]

N. Dunford and J. T. Schwartz, Linear operators. Part Ⅱ: Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963.  Google Scholar

[7]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.  Google Scholar

[8]

G. Metafune and M. Sobajima, Spectral properties of non-selfadjoint extensions of the Calogero Hamiltonian, Funkcial. Ekvac., 59 (2016), 123-140.  doi: 10.1619/fesi.59.123.  Google Scholar

[9]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220.  doi: 10.1016/0001-8708(75)90151-6.  Google Scholar

[10]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.  doi: 10.1080/00036811.2011.631914.  Google Scholar

[11]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.  doi: 10.3934/eect.2012.1.337.  Google Scholar

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅱ, Academic Press, New York, 1975.   Google Scholar
[13]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.  doi: 10.7153/dea-06-17.  Google Scholar

[14]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.  Google Scholar

[15]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.  doi: 10.7153/dea-2017-09-24.  Google Scholar

[16]

T. Suzuki, Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods, Evol. Equ. Control Theory, 8 (2019), 447-471.  doi: 10.3934/eect.2019022.  Google Scholar

[17]

T. Suzuki, Semilinear Schrödinger equations with a potential of some critical inverse-square type, J. Differ. Equ., 268 (2020), 7629-7668.  doi: 10.1016/j.jde.2019.11.087.  Google Scholar

[18]

S. Watanabe, The explicit solutions to the time-dependent Schrödinger equation with the singular potentials $k/(2x^{2})$ and $k/(2x^{2})+\omega^{2}x^{2}/2$, Commun. Partial Diff. Equ., 26 (2001), 571-593.  doi: 10.1081/PDE-100002238.  Google Scholar

show all references

References:
[1]

K. AoudaN. KandaS. Naka and H. Toyoda, Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect, Phys. Rev. D, 102 (2020), 025002.  doi: 10.1103/physrevd.102.025002.  Google Scholar

[2]

N. BurqF. PlanchonJ. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[3]

F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191-2196.   Google Scholar

[4]

F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12 (1971), 419–436 ("Erratum", ibidem 37 (1996), 3646). doi: 10.1063/1.1665604.  Google Scholar

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843.  doi: 10.1137/S0036141002416936.  Google Scholar

[6]

N. Dunford and J. T. Schwartz, Linear operators. Part Ⅱ: Spectral theory, Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963.  Google Scholar

[7]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.  Google Scholar

[8]

G. Metafune and M. Sobajima, Spectral properties of non-selfadjoint extensions of the Calogero Hamiltonian, Funkcial. Ekvac., 59 (2016), 123-140.  doi: 10.1619/fesi.59.123.  Google Scholar

[9]

J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math., 16 (1975), 197-220.  doi: 10.1016/0001-8708(75)90151-6.  Google Scholar

[10]

N. OkazawaT. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.  doi: 10.1080/00036811.2011.631914.  Google Scholar

[11]

N. OkazawaT. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.  doi: 10.3934/eect.2012.1.337.  Google Scholar

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Ⅱ, Academic Press, New York, 1975.   Google Scholar
[13]

T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.  doi: 10.7153/dea-06-17.  Google Scholar

[14]

T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.  doi: 10.1619/fesi.59.1.  Google Scholar

[15]

T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.  doi: 10.7153/dea-2017-09-24.  Google Scholar

[16]

T. Suzuki, Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods, Evol. Equ. Control Theory, 8 (2019), 447-471.  doi: 10.3934/eect.2019022.  Google Scholar

[17]

T. Suzuki, Semilinear Schrödinger equations with a potential of some critical inverse-square type, J. Differ. Equ., 268 (2020), 7629-7668.  doi: 10.1016/j.jde.2019.11.087.  Google Scholar

[18]

S. Watanabe, The explicit solutions to the time-dependent Schrödinger equation with the singular potentials $k/(2x^{2})$ and $k/(2x^{2})+\omega^{2}x^{2}/2$, Commun. Partial Diff. Equ., 26 (2001), 571-593.  doi: 10.1081/PDE-100002238.  Google Scholar

[1]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[2]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[3]

Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations & Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531

[4]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[5]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Abdelaziz Rhandi. Kolmogorov equations perturbed by an inverse-square potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 623-630. doi: 10.3934/dcdss.2011.4.623

[6]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[7]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[8]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[9]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[10]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[11]

Víctor Almeida, Jorge J. Betancor. Variation and oscillation for harmonic operators in the inverse Gaussian setting. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021183

[12]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[13]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[14]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[15]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[16]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[17]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[18]

Lei Wei, Xiyou Cheng, Zhaosheng Feng. Exact behavior of positive solutions to elliptic equations with multi-singular inverse square potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7169-7189. doi: 10.3934/dcds.2016112

[19]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[20]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (104)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]