-
Previous Article
On local well-posedness of logarithmic inviscid regularizations of generalized SQG equations in borderline Sobolev spaces
- CPAA Home
- This Issue
-
Next Article
Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient
Regularity and existence of positive solutions for a fractional system
1. | Department of Mathematics and Statistics, Huanghuai University, Zhumadian, Henan 463000, China |
2. | Department of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China |
$ \begin{equation*} \left\{\begin{array}{ll} (- \Delta)^{\frac{\alpha_1}{2}}u(x) = f(x, u, v), & \text{in}\, \, \, \Omega, \\ (- \Delta)^{\frac{\alpha_2}{2}}v(x) = g(x, u, v), & \text{in}\, \, \, \Omega, \\ u = v = 0, & \text{in}\, \, \, \mathbb{R}^n\setminus\Omega, \end{array} \right. \label{a-1.2} \end{equation*} $ |
$ 0<\alpha_1, \alpha_2<2 $ |
$ \Omega $ |
$ C^2 $ |
$ \mathbb{R}^n $ |
$ 0<\alpha_1, \alpha_2<1 $ |
$ 1<\alpha_1, \alpha_2 <2 $ |
References:
[1] |
R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003.
![]() ![]() |
[2] |
G. Alberti, G. Bouchitté and P. Seppecher,
Phase transition with the line-tension effect, Arch. Ration. Mech. Anal., 144 (1998), 1-46.
doi: 10.1007/s002050050111. |
[3] |
B. Barrios, L. M. Del Pezzo, J. G. Melián and A. Quaas,
A priori bounds and existence of solutions for some nonlocal elliptic problems, Rev. Mat. Iberoam., 34 (2018), 195-220.
doi: 10.4171/RMI/983. |
[4] |
T. Bartsch, N. Dancer and Z. Wang,
A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[5] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1996.
![]() ![]() |
[6] |
K. Bogdan, T. Kulczycki and A. Nowak,
Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.
|
[7] |
L. Caffarelli, J. M. Roquejoffre and Y. Sire,
Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.
doi: 10.4171/JEMS/226. |
[8] |
L. Caffarelli and L. Silvestre,
Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.
doi: 10.1007/s00205-010-0336-4. |
[9] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[10] |
W. Chen, C. Li and Y. Li,
A direct blowng-up and rescaling argument on nonlocal elliptic equations, Int. J. Math., 27 (2016), 1650064.
doi: 10.1142/S0129167X16500646. |
[11] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd, 2020.
doi: 10.1142/10550. |
[12] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, 2004. |
[13] |
S. Dipierro and A. Pinamont,
A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, J. Differ. Equ., 255 (2013), 85-119.
doi: 10.1016/j.jde.2013.04.001. |
[14] |
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin, 1976, translated from French by C.W. John. |
[15] |
P. Felmer and A. Quaas,
Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.
doi: 10.1016/j.aim.2010.09.023. |
[16] |
B. Gidas and J. Spruck,
A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial. Differ. Equ., 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[17] |
M. d. M. González,
Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ., 36 (2009), 173-210.
doi: 10.1007/s00526-009-0225-6. |
[18] |
D. Kriventsov,
$C^{1, \alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Commun. Partial. Differ. Equ., 38 (2013), 2081-2106.
doi: 10.1080/03605302.2013.831990. |
[19] |
E. Leite and M. Montenegro,
On positive viscosity solutions of fractional Lane-Emden systems, Topol. Methods Nonlinear Anal., 53 (2019), 407-425.
doi: 10.12775/tmna.2019.005. |
[20] |
Y. Li and P. Ma,
Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.
doi: 10.1007/s11425-016-0231-x. |
[21] |
L. Lin,
A priori bounds and existence result of positive solutions for fractional Laplacian systems, Discrete Contin. Dyn. Syst., 39 (2019), 1517-1531.
doi: 10.3934/dcds.2019065. |
[22] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimate in superlinear problems via Liouville-type theorem. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[23] |
A. Quaas and A. Xia,
Liouville type theorems for nonlinear elliptic equation and systems involving frctional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52 (2015), 641-659.
doi: 10.1007/s00526-014-0727-8. |
[24] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures. Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[25] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[26] |
R. Zhuo and Y. Li,
Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1595-1611.
doi: 10.3934/dcds.2019071. |
[27] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan,
Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125. |
[28] |
A. Zoia, A. Rosso and K. Kardar,
Fractional Laplacian in bounded domains, Phys. Rev. E, 76 (2007), 021116.
doi: 10.1103/PhysRevE.76.021116. |
show all references
References:
[1] |
R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003.
![]() ![]() |
[2] |
G. Alberti, G. Bouchitté and P. Seppecher,
Phase transition with the line-tension effect, Arch. Ration. Mech. Anal., 144 (1998), 1-46.
doi: 10.1007/s002050050111. |
[3] |
B. Barrios, L. M. Del Pezzo, J. G. Melián and A. Quaas,
A priori bounds and existence of solutions for some nonlocal elliptic problems, Rev. Mat. Iberoam., 34 (2018), 195-220.
doi: 10.4171/RMI/983. |
[4] |
T. Bartsch, N. Dancer and Z. Wang,
A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[5] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1996.
![]() ![]() |
[6] |
K. Bogdan, T. Kulczycki and A. Nowak,
Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.
|
[7] |
L. Caffarelli, J. M. Roquejoffre and Y. Sire,
Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.
doi: 10.4171/JEMS/226. |
[8] |
L. Caffarelli and L. Silvestre,
Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.
doi: 10.1007/s00205-010-0336-4. |
[9] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[10] |
W. Chen, C. Li and Y. Li,
A direct blowng-up and rescaling argument on nonlocal elliptic equations, Int. J. Math., 27 (2016), 1650064.
doi: 10.1142/S0129167X16500646. |
[11] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd, 2020.
doi: 10.1142/10550. |
[12] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financ. Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, 2004. |
[13] |
S. Dipierro and A. Pinamont,
A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, J. Differ. Equ., 255 (2013), 85-119.
doi: 10.1016/j.jde.2013.04.001. |
[14] |
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin, 1976, translated from French by C.W. John. |
[15] |
P. Felmer and A. Quaas,
Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.
doi: 10.1016/j.aim.2010.09.023. |
[16] |
B. Gidas and J. Spruck,
A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial. Differ. Equ., 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[17] |
M. d. M. González,
Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differ. Equ., 36 (2009), 173-210.
doi: 10.1007/s00526-009-0225-6. |
[18] |
D. Kriventsov,
$C^{1, \alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Commun. Partial. Differ. Equ., 38 (2013), 2081-2106.
doi: 10.1080/03605302.2013.831990. |
[19] |
E. Leite and M. Montenegro,
On positive viscosity solutions of fractional Lane-Emden systems, Topol. Methods Nonlinear Anal., 53 (2019), 407-425.
doi: 10.12775/tmna.2019.005. |
[20] |
Y. Li and P. Ma,
Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.
doi: 10.1007/s11425-016-0231-x. |
[21] |
L. Lin,
A priori bounds and existence result of positive solutions for fractional Laplacian systems, Discrete Contin. Dyn. Syst., 39 (2019), 1517-1531.
doi: 10.3934/dcds.2019065. |
[22] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimate in superlinear problems via Liouville-type theorem. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[23] |
A. Quaas and A. Xia,
Liouville type theorems for nonlinear elliptic equation and systems involving frctional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52 (2015), 641-659.
doi: 10.1007/s00526-014-0727-8. |
[24] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures. Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[25] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[26] |
R. Zhuo and Y. Li,
Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1595-1611.
doi: 10.3934/dcds.2019071. |
[27] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan,
Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125. |
[28] |
A. Zoia, A. Rosso and K. Kardar,
Fractional Laplacian in bounded domains, Phys. Rev. E, 76 (2007), 021116.
doi: 10.1103/PhysRevE.76.021116. |
[1] |
Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065 |
[2] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[3] |
Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416 |
[4] |
Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063 |
[5] |
E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731 |
[6] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[7] |
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 |
[8] |
Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 |
[9] |
Salvatore A. Marano, Sunra J. N. Mosconi. Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 279-291. doi: 10.3934/dcdss.2018015 |
[10] |
Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547 |
[11] |
Xuewei Cui, Mei Yu. Non-existence of positive solutions for a higher order fractional equation. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1379-1387. doi: 10.3934/dcds.2019059 |
[12] |
César E. Torres Ledesma. Existence of positive solutions for a class of fractional Choquard equation in exterior domain. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3301-3328. doi: 10.3934/dcds.2022016 |
[13] |
R. Dhanya, Sweta Tiwari. A multiparameter fractional Laplace problem with semipositone nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4043-4061. doi: 10.3934/cpaa.2021143 |
[14] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[15] |
Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure and Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815 |
[16] |
Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042 |
[17] |
Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 |
[18] |
Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005 |
[19] |
Huaiyu Zhou, Jingbo Dou. Classifications of positive solutions to an integral system involving the multilinear fractional integral inequality. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022070 |
[20] |
Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure and Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]