• Previous Article
    A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications
  • CPAA Home
  • This Issue
  • Next Article
    Large deviation principle for stochastic Burgers type equation with reflection
January  2022, 21(1): 239-273. doi: 10.3934/cpaa.2021176

Variation operators for semigroups associated with Fourier-Bessel expansions

1. 

Departamento de Análisis Matemático, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Sánchez, s/n, 38721 La Laguna (Sta. Cruz de Tenerife), Spain

2. 

Department of Mathematics, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan 010000 Kazakhstan

3. 

Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

* Corresponding author

Received  April 2021 Revised  September 2021 Published  January 2022 Early access  November 2021

Fund Project: J. J. B. was partially supported by PID2019-106093GB-I00, A. J. C. by the Nazarbayev University FDCRGP 110119FD4544 and M. D L-C by EPSRC Research Grant EP/S029486/1 and the ERCIM 'Alain Bensoussan' Fellowship Programme

In this paper we establish Lp-boundedness properties for variation operators defined by semigroups associated with Fourier-Bessel expansions.

Citation: Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure & Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176
References:
[1]

M. A. AkcogluR. L. Jones and P. O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177.   Google Scholar

[2]

V. Almeida, J. J. Betancor, E. Dalmasso and L. Rodríguez-Mesa, Lp-boundedness of Stein's square functions associated with Fourier-Bessel expansions, Mediterr. J. Math., 18 (2021), 40 pp. doi: 10.1007/s00009-021-01800-x.  Google Scholar

[3]

J. J. BetancorA. J. CastroJ. CurbeloJ. C. Fariña and L. Rodríguez-Mesa, Square functions in the Hermite setting for functions with values in UMD spaces, Ann. Mat. Pura Appl., 193 (2014), 1397-1430.  doi: 10.1007/s10231-013-0335-9.  Google Scholar

[4]

J. J. BetancorJ. C. FariñaE. Harboure and L. Rodríguez-Mesa, Lp-boundedness properties of variation operators in the Schrödinger setting, Rev. Mat. Complut., 26 (2013), 485-534.  doi: 10.1007/s13163-012-0094-y.  Google Scholar

[5]

J. J. BetancorE. HarboureA. Nowak and B. Viviani, Mapping properties of fundamental operators in harmonic analysis related to Bessel operators, Studia Math., 197 (2010), 101-140.  doi: 10.4064/sm197-2-1.  Google Scholar

[6]

J. J. Betancor and K. Stempak, Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform, Tohoku Math. J., 53 (2001), 109-129.  doi: 10.2748/tmj/1178207534.  Google Scholar

[7]

J. J. Betancor and K. Stempak, On Hankel conjugate functions, Studia Sci. Math. Hungar., 41 (2004), 59-91.  doi: 10.1556/SScMath.41.2004.1.4.  Google Scholar

[8]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math., 5–45.  Google Scholar

[9]

T. A. Bui, X. T. Duong and F. K. Ly, Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications, J. Funct. Anal., 278 (2020), 108423, 55 pp. doi: 10.1016/j.jfa.2019.108423.  Google Scholar

[10]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.  doi: 10.1215/S0012-7094-00-10513-3.  Google Scholar

[11]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.  Google Scholar

[12]

O. Ciaurri and L. Roncal, Littlewood-Paley-Stein gk-functions for Fourier-Bessel expansions, J. Funct. Anal., 258 (2010), 2173-2204.  doi: 10.1016/j.jfa.2009.12.014.  Google Scholar

[13]

O. Ciaurri and K. Stempak, Transplantation and multiplier theorems for Fourier-Bessel expansions, Trans. Amer. Math. Soc., 358 (2006), 4441-4465.  doi: 10.1090/S0002-9947-06-03885-2.  Google Scholar

[14]

R. CrescimbeniR. A. MacíasT. MenárguezJ. L. Torrea and B. Viviani, The ρ-variation as an operator between maximal operators and singular integrals, J. Evol. Equ., 9 (2009), 81-102.  doi: 10.1007/s00028-009-0003-0.  Google Scholar

[15]

J. DziubańskiM. PreisnerL. Roncal and P. R. Stinga, Hardy spaces for Fourier-Bessel expansions, J. Anal. Math., 128 (2016), 261-287.  doi: 10.1007/s11854-016-0009-9.  Google Scholar

[16]

H. Hochstadt, The mean convergence of Fourier-Bessel series, SIAM Rev., 9 (1967), 211-218.  doi: 10.1137/1009034.  Google Scholar

[17]

T. P. HytönenM. T. Lacey and C. Pérez, Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc., 45 (2013), 529-540.  doi: 10.1112/blms/bds114.  Google Scholar

[18]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergod. Theor. Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.  Google Scholar

[19]

R. L. Jones and K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergod. Theor. Dynam. Syst., 21 (2001), 1809-1829.  doi: 10.1017/S0143385701001869.  Google Scholar

[20]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.  Google Scholar

[21]

R. L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., 356 (2004), 4493-4518.  doi: 10.1090/S0002-9947-04-03397-5.  Google Scholar

[22]

B. Langowski and A. Nowak, Mapping properties of fundamental harmonic analysis operators in the exotic Bessel framework, J. Math. Anal. Appl., 499 (2021), 125061, 36 pp. doi: 10.1016/j.jmaa.2021.125061.  Google Scholar

[23]

C. Le Merdy and Q. Xu, Strong q-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble), 62 (2012), 2069-2097.  doi: 10.5802/aif.2743.  Google Scholar

[24]

N. N. Lebedev, Special Functions and their Applications, Dover Publications, Inc., New York, 1972.  Google Scholar

[25]

D. Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36 (1976), 295-316.  doi: 10.1007/BF00532696.  Google Scholar

[26]

R. MacíasC. Segovia and J. L. Torrea, Heat-diffusion maximal operators for Laguerre semigroups with negative parameters, J. Funct. Anal., 229 (2005), 300-316.  doi: 10.1016/j.jfa.2005.02.005.  Google Scholar

[27]

J. MałeckiG. Serafin and T. Zorawik, Fourier-Bessel heat kernel estimates, J. Math. Anal. Appl., 439 (2016), 91-102.  doi: 10.1016/j.jmaa.2016.02.051.  Google Scholar

[28]

B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.  doi: 10.2307/1993944.  Google Scholar

[29]

A. Nowak and L. Roncal, On sharp heat and subordinated kernel estimates in the Fourier-Bessel setting, Rocky Mountain J. Math., 44 (2014), 1321-1342.  doi: 10.1216/RMJ-2014-44-4-1321.  Google Scholar

[30]

A. Nowak and L. Roncal, Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter, Acta Math. Sin. (Engl. Ser.), 30 (2014), 437-444.  doi: 10.1007/s10114-014-2512-1.  Google Scholar

[31]

A. Nowak and P. Sjögren, The multi-dimensional pencil phenomenon for {L}aguerre heat-diffusion maximal operators, Math. Ann., 344 (2009), 213-248.  doi: 10.1007/s00208-008-0305-5.  Google Scholar

[32]

J. Qian, The p-variation of partial sum processes and the empirical process, Ann. Probab., 26 (1998), 1370-1383.  doi: 10.1214/aop/1022855756.  Google Scholar

[33]

J. L. Rubio de FranciaF. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. Math., 62 (1986), 7-48.  doi: 10.1016/0001-8708(86)90086-1.  Google Scholar

[34]

F. J. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math., 88 (1988), 221-243.  doi: 10.4064/sm-88-3-221-243.  Google Scholar

[35]

E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.  Google Scholar

[36]

K. Stempak, On convergence and divergence of Fourier-Bessel series, 14 (2002), 223–235  Google Scholar

[37]

J. L. Torrea and C. Zhang, Fractional vector-valued Littlewood-Paley-Stein theory for semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 637-667.  doi: 10.1017/S0308210511001302.  Google Scholar

[38] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.   Google Scholar
[39]

H. WuD. Yang and J. Zhang, Oscillation and variation for semigroups associated with Bessel operators, J. Math. Anal. Appl., 443 (2016), 848-867.  doi: 10.1016/j.jmaa.2016.05.044.  Google Scholar

[40]

K. Yosida, Functional Analysis, Springer-Verlag New York Inc., New York, 1968.  Google Scholar

show all references

References:
[1]

M. A. AkcogluR. L. Jones and P. O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177.   Google Scholar

[2]

V. Almeida, J. J. Betancor, E. Dalmasso and L. Rodríguez-Mesa, Lp-boundedness of Stein's square functions associated with Fourier-Bessel expansions, Mediterr. J. Math., 18 (2021), 40 pp. doi: 10.1007/s00009-021-01800-x.  Google Scholar

[3]

J. J. BetancorA. J. CastroJ. CurbeloJ. C. Fariña and L. Rodríguez-Mesa, Square functions in the Hermite setting for functions with values in UMD spaces, Ann. Mat. Pura Appl., 193 (2014), 1397-1430.  doi: 10.1007/s10231-013-0335-9.  Google Scholar

[4]

J. J. BetancorJ. C. FariñaE. Harboure and L. Rodríguez-Mesa, Lp-boundedness properties of variation operators in the Schrödinger setting, Rev. Mat. Complut., 26 (2013), 485-534.  doi: 10.1007/s13163-012-0094-y.  Google Scholar

[5]

J. J. BetancorE. HarboureA. Nowak and B. Viviani, Mapping properties of fundamental operators in harmonic analysis related to Bessel operators, Studia Math., 197 (2010), 101-140.  doi: 10.4064/sm197-2-1.  Google Scholar

[6]

J. J. Betancor and K. Stempak, Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform, Tohoku Math. J., 53 (2001), 109-129.  doi: 10.2748/tmj/1178207534.  Google Scholar

[7]

J. J. Betancor and K. Stempak, On Hankel conjugate functions, Studia Sci. Math. Hungar., 41 (2004), 59-91.  doi: 10.1556/SScMath.41.2004.1.4.  Google Scholar

[8]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math., 5–45.  Google Scholar

[9]

T. A. Bui, X. T. Duong and F. K. Ly, Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications, J. Funct. Anal., 278 (2020), 108423, 55 pp. doi: 10.1016/j.jfa.2019.108423.  Google Scholar

[10]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.  doi: 10.1215/S0012-7094-00-10513-3.  Google Scholar

[11]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.  Google Scholar

[12]

O. Ciaurri and L. Roncal, Littlewood-Paley-Stein gk-functions for Fourier-Bessel expansions, J. Funct. Anal., 258 (2010), 2173-2204.  doi: 10.1016/j.jfa.2009.12.014.  Google Scholar

[13]

O. Ciaurri and K. Stempak, Transplantation and multiplier theorems for Fourier-Bessel expansions, Trans. Amer. Math. Soc., 358 (2006), 4441-4465.  doi: 10.1090/S0002-9947-06-03885-2.  Google Scholar

[14]

R. CrescimbeniR. A. MacíasT. MenárguezJ. L. Torrea and B. Viviani, The ρ-variation as an operator between maximal operators and singular integrals, J. Evol. Equ., 9 (2009), 81-102.  doi: 10.1007/s00028-009-0003-0.  Google Scholar

[15]

J. DziubańskiM. PreisnerL. Roncal and P. R. Stinga, Hardy spaces for Fourier-Bessel expansions, J. Anal. Math., 128 (2016), 261-287.  doi: 10.1007/s11854-016-0009-9.  Google Scholar

[16]

H. Hochstadt, The mean convergence of Fourier-Bessel series, SIAM Rev., 9 (1967), 211-218.  doi: 10.1137/1009034.  Google Scholar

[17]

T. P. HytönenM. T. Lacey and C. Pérez, Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc., 45 (2013), 529-540.  doi: 10.1112/blms/bds114.  Google Scholar

[18]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergod. Theor. Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.  Google Scholar

[19]

R. L. Jones and K. Reinhold, Oscillation and variation inequalities for convolution powers, Ergod. Theor. Dynam. Syst., 21 (2001), 1809-1829.  doi: 10.1017/S0143385701001869.  Google Scholar

[20]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.  Google Scholar

[21]

R. L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., 356 (2004), 4493-4518.  doi: 10.1090/S0002-9947-04-03397-5.  Google Scholar

[22]

B. Langowski and A. Nowak, Mapping properties of fundamental harmonic analysis operators in the exotic Bessel framework, J. Math. Anal. Appl., 499 (2021), 125061, 36 pp. doi: 10.1016/j.jmaa.2021.125061.  Google Scholar

[23]

C. Le Merdy and Q. Xu, Strong q-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble), 62 (2012), 2069-2097.  doi: 10.5802/aif.2743.  Google Scholar

[24]

N. N. Lebedev, Special Functions and their Applications, Dover Publications, Inc., New York, 1972.  Google Scholar

[25]

D. Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36 (1976), 295-316.  doi: 10.1007/BF00532696.  Google Scholar

[26]

R. MacíasC. Segovia and J. L. Torrea, Heat-diffusion maximal operators for Laguerre semigroups with negative parameters, J. Funct. Anal., 229 (2005), 300-316.  doi: 10.1016/j.jfa.2005.02.005.  Google Scholar

[27]

J. MałeckiG. Serafin and T. Zorawik, Fourier-Bessel heat kernel estimates, J. Math. Anal. Appl., 439 (2016), 91-102.  doi: 10.1016/j.jmaa.2016.02.051.  Google Scholar

[28]

B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.  doi: 10.2307/1993944.  Google Scholar

[29]

A. Nowak and L. Roncal, On sharp heat and subordinated kernel estimates in the Fourier-Bessel setting, Rocky Mountain J. Math., 44 (2014), 1321-1342.  doi: 10.1216/RMJ-2014-44-4-1321.  Google Scholar

[30]

A. Nowak and L. Roncal, Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter, Acta Math. Sin. (Engl. Ser.), 30 (2014), 437-444.  doi: 10.1007/s10114-014-2512-1.  Google Scholar

[31]

A. Nowak and P. Sjögren, The multi-dimensional pencil phenomenon for {L}aguerre heat-diffusion maximal operators, Math. Ann., 344 (2009), 213-248.  doi: 10.1007/s00208-008-0305-5.  Google Scholar

[32]

J. Qian, The p-variation of partial sum processes and the empirical process, Ann. Probab., 26 (1998), 1370-1383.  doi: 10.1214/aop/1022855756.  Google Scholar

[33]

J. L. Rubio de FranciaF. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. Math., 62 (1986), 7-48.  doi: 10.1016/0001-8708(86)90086-1.  Google Scholar

[34]

F. J. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math., 88 (1988), 221-243.  doi: 10.4064/sm-88-3-221-243.  Google Scholar

[35]

E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.  Google Scholar

[36]

K. Stempak, On convergence and divergence of Fourier-Bessel series, 14 (2002), 223–235  Google Scholar

[37]

J. L. Torrea and C. Zhang, Fractional vector-valued Littlewood-Paley-Stein theory for semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 637-667.  doi: 10.1017/S0308210511001302.  Google Scholar

[38] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.   Google Scholar
[39]

H. WuD. Yang and J. Zhang, Oscillation and variation for semigroups associated with Bessel operators, J. Math. Anal. Appl., 443 (2016), 848-867.  doi: 10.1016/j.jmaa.2016.05.044.  Google Scholar

[40]

K. Yosida, Functional Analysis, Springer-Verlag New York Inc., New York, 1968.  Google Scholar

[1]

Carlo Bardaro, Ilaria Mantellini. Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021031

[2]

Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435

[3]

Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086

[4]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[5]

Karma Dajani, Cor Kraaikamp, Pierre Liardet. Ergodic properties of signed binary expansions. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 87-119. doi: 10.3934/dcds.2006.15.87

[6]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[7]

Alexandre Thorel. A biharmonic transmission problem in Lp-spaces. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3193-3213. doi: 10.3934/cpaa.2021102

[8]

Jesse Goodman, Daniel Spector. Some remarks on boundary operators of Bessel extensions. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 493-509. doi: 10.3934/dcdss.2018027

[9]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[10]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[11]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[12]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[13]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[14]

Danilo Costarelli, Gianluca Vinti. Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators. Mathematical Foundations of Computing, 2020, 3 (1) : 41-50. doi: 10.3934/mfc.2020004

[15]

Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052

[16]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[17]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[18]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[19]

Víctor Almeida, Jorge J. Betancor. Variation and oscillation for harmonic operators in the inverse Gaussian setting. Communications on Pure & Applied Analysis, 2022, 21 (2) : 419-470. doi: 10.3934/cpaa.2021183

[20]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (57)
  • HTML views (95)
  • Cited by (0)

[Back to Top]